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1 Introduction
Reference Text:

1. Michael Atiyah, Introduction to commutative algebra.

2. Matsumura, Commutative Ring theory, Cambridge series.

3. Jean Serre, Local Algebra, Springer.

N = 0, 1, ....

1.1 Rings and algebras
The reader is assumed to be familiar with the fundamentals of rings.

Example 1.1 (examples of rings from number theory).

1. Gaussian integer Z[i]

2. Eisenstein integer Z[ω] where ω = −1+
√
3i

2
the root of x2 + x2 + 1. (Note: ω2 = −1− ω)

3. polynomial algebras over a coefficient ring A:

A[x] := {formal sums
∑
i∈Nn

aix
i}

where the coefficients are almost all zero. (Note the i is multi-index, and xi = xi11 ...x
in
n ). The identity

idA[x] = 1 · x.

4. Rings of functions on geometric objects: C(X,R), C∞(X,C) etc.

Example 1.2 (p-adic no.).

Z Q R C

Fp Zp Qp

(1)

Proposition 1.1 (Universal Property of the zero ring). For any ring A, there exists a unique ring homo-
morphism form A to 0.

Remark 1.1. Geometrically for any set X, ∃! set map φ : ϕ→ X

Proposition 1.2 (Universal Property of the ring Z). For any ring A< ∃! ring homomorphism: Z→ A

Proof. f : Z→ A: n ≥ 0 : f(n) = n · 1A; n < 0, f(n) = −f(−n).
Remark 1.2. Geometrically for any set X, ∃! set map φ : X → {·}.
Definition 1.1. Let A be a commutative ring. An A-algebra (commutative algebra) consists of:

1. A ring B (underlying ring of the A-algebra)

2. a ring φB : A→ B (structural homomorphism of B as A-algebra)

Remark 1.3. In context of A-algebras, anything in A is considered ‘known’.
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Example 1.3. Any commutative ring is canonically and uniquely a Z-algebra, immediately from the
universal property of Z.
Example 1.4. Given base ring A, the polynomial algebra A[x] is an A-algebra. with structural homo-
morphism A→ A[x] : a 7→ ax(0,...,0).
Proposition 1.3 (Universal property of A-algebra). For any A-algebra B, and any n elements b1, ..., bn ∈
B: ∃!A-algebra homomorphism: f : A[x1, ..., xn]→ B such that f(x1) = b1, ..., f(xn) = bn.
Definition 1.2. If B,C are A-algebra, an A-algebra homomorphism: B → C is a map such that f is a
ring homomorphism and the diagram commutes:

B C

A

f

φB φC

(2)

f ◦ φB = φC .
Definition 1.3. Let A be base ring. Let B be a A-algebra. A sub-A-algebra of B (a.k.a., subring of B
when A = Z) is a additive subgroup which is closed under multiplication of B and contains 1B. Moreover,
the structural homomorphism φB : A→ B maps into C. i.e. φB : A

φC→ C ↪→ B.
Remark 1.4. When we speak of subring, the last prerequisite becomes unnecessary.
Example 1.5. C[X2, Y 3] ⊆ C[X,Y ]

Definition 1.4. Let A be a base ring. {Bi}i∈I be a family of A-algebra. The direct product A-algebra of
the family is a A-algebra given by underlying ring:

∏
i∈I Bi with conventional zero and identity. and the

A-algebra structural homomorphism given by

φ∏
Bi

: A→
∏
i∈I

Bi; a 7→ (φi(a))i∈I

Remark 1.5. The direct product comes with projection maps. ∀j ∈ I, we have

πj :
∏

Bi → Bj; (bi)i∈I 7→ bj

.
Proposition 1.4 (Universal property of direct product). Given any A-algebra C and ∀j ∈ I, given an
A-algebra homomorphism fj : C → Bj, ∃!A-algebra homomorphism f : C →

∏
Bi such that ∀j ∈ I, the

diagram commutes. ∏
Bi Bj

C

πj

fi
f̃

(3)

Definition 1.5. A subring of a ring A is a subset B ⊆ A such that B is an additive subgroup and is
closed under multiplication which contains 1A. An ideal of a ring A is a subset I ⊆ A such that I is an
additive subgroup which ∀a ∈ A,∀x ∈ I, ax ∈ I.
Definition 1.6. Given a ring A and an ideal I ⊆ A, a quotient ring of A modulo I is the ring A/I
with the canonical map:

π : A→ A/I; a 7→ a+ I

which is a surjective ring homomorphism.

3



Graduate Algbera II-A script 1.2 prime and maximal ideals

Example 1.6. A/{0A} ∼= A A/A ∼= 0 Z/nZ the ring of integers modulo n.
Proposition 1.5 (Universal Property of quotient ring). Given a ring A and an ideal I. Then for any ring
and a ring homomorphism f : A → B, such that for all a ∈ I, f(x) = 0. Then it induces an unique ring
homomorphism f̃ : A/I → B making the following diagram commutes.

A B

C

f

q

f̃

(4)

Remark 1.6. f−1(any ideal of B is an ideal of A. Hence when q : A↠ A/I the quotient homomorphism.
Then there is a bijection:

{radicals of A ⊇ I} ←→ {ideals of A/I}
J(⊇ I)→ q(J) = J/I

More precisely, we have the following isomorphism theorem:
Theorem 1.1. For any homomorphism f : A→ B, there induces an isomorphism of rings: f̃ : A/ ker(f) ∼=
Im(f). In addition, the following diagrams commutes:

A B

A/ ker(f) f(A)

f

q

f̃

∼=

(5)

Definition 1.7. Given A a ring. Then x ∈ A is a zero-divisor if ∃y ∈ A\{0}, such that x ·y = 0A. x ∈ A
is nilpotent element if ∃ ∈ N such that xn = 0A. x ∈ A is invertible if ∃y ∈ A such that x · y = 1A.
Example 1.7. In Z/6Z, then 2+ 6Z and 3+ 6Z are zero divisors which does not have nilpotent element.
Definition 1.8. We define a ring A to be a integral domain(or for brevity domain) if A ̸= 0 and A
does not possess any zero-divisors other than zero. We say a ring A is reduced if A does not possess any
nilpotent elements other than zero.

1.2 prime and maximal ideals
Definition 1.9. An ideal p ⊊ A is a prime ideal of ∀a, b ∈ A such that a · b ∈ p then either a ∈ p or
b ∈ p.
Remark 1.7. When p is prime, then A/p is a integral domain.
Definition 1.10. An ideal m ∈ A is maximal if m ̸= A and is maximal with respect to inclusion. i.e.,
∀I ⊋ m, I = A.
Remark 1.8. m is maximal ⇐⇒ A/m is a field.
Remark 1.9. Given a family of ideals {Ij = i} of A. Then the intersection

∩
i∈I Ii ⊆ A is an ideal, so is

the sum
∑

i∈I Ii, where
∑

i∈I Ii is the intersection of all ideals containing Ij, i.e., the ideal generated by
{Ii}.
Proposition 1.6. Let f : A→ B a ring homomorphism. Then for any prime ideal q ∈ B, f−1(q ∈ A) is
also a prime ideal.
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Proof. Consider the following diagram:

A B B/q

A/f−1(q) g(A)

f

g

π

∼=

id (6)

where A/f−1(q) is either 0 or A. But f−1(q) ̸= A, for a /∈ f−1(q). Hence A/f−1(q) is a integral domain.
Proposition 1.7 (Existence of maximal ideals for non-zero rings). Let A be a non-zero ring. then ∃ a
maximal (hence prime) ideal in A.

Proof. Zorn’s Lemma and note the set of proper ideals of A is not empty, containing zero ideal.
Corollary 1.1. Let A be a non-zero ring. a ⊊ A be a proper ideal. Then ∃ a maximal ideal m ⊆ A such
that a ⊆ m.

Proof. Apply the proposition to A/a.
Corollary 1.2. Let A be a non-zero ring. a ∈ A\A× be any non-invertible element. Then ∃ maximal
ideal containing a.
Definition 1.11. Let I ⊆ A be ideal. The radical of I is

rad(I) := {a ∈ A : ∃n ∈ N, an ∈ I}

The nilradical of A is

nil(A) := rad(zero ideal in A) = {a ∈ A : ∃n ∈ N, an = 0A}

Remark 1.10. rad(I) ⊇ I an ideal. If a, b ∈ rad(I), so is a+ b.
Proposition 1.8. nil(A) =

∩
all prime ideals in A.

Proof. ⊆ is clear. For the direction of ⊇, suppose a is not nilpotent. Consider A[1/a] := A[X]/(aX − 1).
we show this ring is nonzero. Assuming this, choose a maximal hence prime ideal q ⊆ a[1/a]and the ring
homomorphism:

A ↪→ A[x] ↠ A[1/a] (7)
f−1q = p 7→ q (8)

hence a /∈ p.
Now we show A[1/a] /∈ 0. Suppose A[1/a] = 0. then A[1/a] ⇐⇒ (aX − 1) · A[X] = A[X] ⇐⇒
∃φ(X) := a0 + a1X + ...+ anX

n ∈ A[X] such that (aX − 1) · φ(X) = 1 ∈ A[X]. Then a0 = 1, a · a0 = a,
a2 = a · a1 = a2... ar = a · an−1 = an and a · an = 0. Hence a is nilpotent.
Remark 1.11. The spirit of this proof is to construct a new ring in which the original elements becomes
invertible. So is this the method of localisation.
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1.3 Zariski topology
Definition 1.12. Let A be a ring. Then the prime spectrum of ring A is

SpecA := {prime ideals of A}

For any subset E ⊆ A, we define:

V (E) := {p ∈ Spec(A) : p ⊆ E}
= {all prime ideals of A ⊆ E}

So V (E) ⊆ Spec(A).
Definition 1.13. We define the Zariski topology on Spec(A) being defining the closed sets in Spec(A)
to be:

C := {collection of all these V (E) : E ∈ A}

Remark 1.12. One could readily verifies the axioms of topology fulfilled with the following Lemmas. The
others are left to the reader.
Lemma 1.1.

V (E) = V (ideals in A generated by E) (9)∩
i∈I

V (Ei) = V (
∪
i∈I

Ei)
∩
i∈I

V (ai) = V (
∑
i∈I

ai) (10)

for any ideals a, b ⊆ A, V (a ∩ b) = V (ab) = V (a) ∩ V (b) (11)

where ab denotes the product ideals.

Proof. p prime ideal of A contains E ⇐⇒ it contains an ideal generated by E. If p ⊇ a ∩ b ⊇ ab, hence
p ⊃ a or p ⊇ b.
Example 1.1.

1. Spec(F)=zero ideals of F is a singleton.

2. Spec(Z)=zero ideal 0Z ∩ pZ: p prime number, where closed sets are V (aZ : a ∈ Z) = {p prime :
p|a}, which is a finite union of V (pZ) = {pZ}. Moreover, except of Spec(Z) itself, no closed subset
contains 0Z

Remark. To express the topology on Z explicitly, we have (0) be not closed point, and (p) are all
closed points. Yet {0Z} is Spec(Z). Hence {0Z} is dense in Spec(Z), testifying that Zariski topology
are in general not Hausdorff. This may sometimes, however, be a virtue. We we exploit an set X,
which possess an certain desired property. Showing X is closed and 0Z ∈ X shall be sufficient to
extend X to all prime ideals of Z, that is, Spec(Z).

3. Spec(F[x])={Zero ideals 0 · F[x]}∩ {f · F[x]: f monic polynomials irreducible over F}, where the
closed sets are finite union of {f · F[x]} where f monic polynomials irreducible over F.

Remark (Special case F = C).

Spec(C[x]) ∼= {0} ⊔ C/{α ∼ (x− α) : α ∈ C}
Spec(R[x]) ∼= {0} ⊔ R/{α ∼ (x− α) : α ∈ R} ⊔ {orbits of (C\R) under complex conjugation}

∼= H/{α ∼ ((x− α)(x− α))}
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Proposition 1.9. Let f : A→ B be a ring homomorphism. Define

f ∗ : Spec(B)→ Spec(A) (12)
q 7→ f ∗(q) := f−1q := {a ∈ A : f(a) ∈ q} (13)

Then this map is well defined by the results of last time. Then f ∗ is continuous in Zariski topology.

Proof. It is equivalent to show that ∀ closed set C in Spec(A) (f ∗)−1(C) := {y ∈ Spec(y); y ∈ C} closed.
Set X := Spec(A), Y := Spec(B), then f ∗ : Y → X, Let C ⊆ X closed, then ∃a ⊆ A such that C = VA(a).
Let b := ideal of B generated by f(a). Let D := VY (b) closed in Y . We claim (f ∗)−1(C) = D.
Let q ⊆ B be a prime ideal. then

q ∈ (f ∗)−1(C) ⇐⇒ (f ∗)(q) ∈ C
⇐⇒ f−1(q) ⊇ a as ideals in A
⇐⇒ f(a) ⊆ q

⇐⇒ b ⊆ q as ideal in B
⇐⇒ q ∈ VY (b) = D

Proposition 1.10. If f : A → B, and g : B → C are ring homomorphisms. Then (g · f)∗ = f ∗ · g∗ with
1∗ the identity on Spec.
Definition 1.14. for f ∈ A, Define Xf = X\V (f) = {p ∈ Spec(A) : f /∈ p} is called a principal/basic
open subset of Spec(A).
Lemma 1.2. Any open subset U ∈ Spec(A) and any x ∈ U , ∃ principal open Xf ∈ X such that
x ∈ Xf ⊆ U .

Proof. Given x ∈ U = X\V (a) for some a ∈ A, where x corresponds to a prime ideal p ⊆ A such that
p ̸⊇ a. Hence ∃f ∈ a\p, Hence we yield Xf principal open, where since f ∈ a, hence Xf ⊆ A\V (a) = U ,
also since f /∈ p, p belongs to Xf .
Remark 1.13. Following the lemma, Xinvertible element = X1 = X;Xnilpotent element = ∅;Xf ∩Xg = Xfg.
Proposition 1.11. Spec(A) = X is quasi-compact if X assumes a finite-subcovering for every covering.
Remark 1.14. According to French AND German school, compact=quasi-compact+hausdorff.

Proof. Let {Ui}i∈I be a covering of x. So X =
∩
i∈I Ui. Because Xf form bases of Zariski-topology, hence

we may assume Ui = Xfi for some fi is principal open. So X =
∪
i∈IXfi , equivalent to say every prime

ideals avoid some fi. Hence let I := ideal in A generated by all fi, hence I ⊊ A an ideal hence must
contain 1, hence ∃ finitely many i1, ..., in ∈ I and with gj ∈ A such that 1 = f1g1 + ... + fngn ∈ A. It
follows that no prime ideal p ∈ A contains all f1, ..., fn. Hence X = Xf1 ∪ ... ∪Xfn .

1.4 Modules
Definition 1.15. A module over a ring A consists:

• an abelian group M (underlying additive group)

• a map A×M →M (scalar multiplication map)
satisfying: ∀a, b ∈ A, m,m′ ∈M ,

• (ab) ·m = a(b ·m)

7
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• 1A ·m = m

• (a+ b) ·m = a ·m+ b ·m

• a · (m+m′) = a ·m+ a ·m′

Remark 1.15. Equivalently, an A-module consists of an additive group M and a ring homomorphism
φM : A→ End(M) and define scalar multiplication a ·m = φM(a)(m).
Example 1.8.

• When A is a field, A-module is A-vector space.

• When A = Z, A-module is an abelian group.

• Zero A-module 0 consisting {0}.

• Regular A-module when M = A as a canonically A-module.

• If φ : A→ B is a ring homomorphism, then B becomes an A-module via φ.

Definition 1.16. Let M,N be a A-module. An A-module homomorphism from M to N consists of a
map f :M → N compatible with the addition of underlying group and respects the scalar multiplication
in M .
Proposition 1.12 (Universal property of zero module). For any A-module M , ∃! A-module homomor-
phism M → 0 and ∃! A-module homomorphism 0→M .
Remark 1.16. So 0 are both the initial and final objects in the category of A-module.
Proposition 1.13 (Universal property of A-module A). For any A-module M and any m ∈ M , ∃!
A-module homomorphism f : A→M such that f(1A) = m.
Definition 1.17. Let M,N be A-module. Then the Hom-modules HomA(M,N) is the A-module with
pointwise addition and pointwise scalar multiplication.
Remark 1.17. letM,N,P be A-module. Then HomA(N,P )×HomA(M,N)→ HomA(M,P ) is A-bilinear.
Definition 1.18. Let {Mi}i∈I be a family of A-module. their direct product is the A-module:∏

i∈I

Mi := {all set theoretic maps m : I → ⊓i∈IMi : ∀i ∈ I,m(i) ∈Mi}

= {co-tuples(mi1 , ...) indexed by i ∈ I : mi ∈Mi}

where the scalar multiplication obvious.Their direct sum is the A-module:⊕
i∈I

Mi := {(mi)i∈I ∈
∏
i∈I

Mi : mi are all but finitely many non-zero}

Proposition 1.14 (Universal Property of
∏
). For any A-module M and any family of A-module homo-

morphism, {fj : M → Mj}j∈I such that ∃!A-module homomorphism f : M →
∏

i∈IMi such that the
following diagram commutes: ∏

M
∏

i∈IMi

Mj

f

fj
πj (14)

8
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Proposition 1.15 (Universal Property of
⊕

). For any A-moduleM and any family A-module homomor-
phism {gi :Mj ∈M}, ∃!A-module g :

⊕
i∈IMi →M such that the following diagram commutes:⊕

i∈IMi Bj

C

g

ιi gj
(15)

Definition 1.19. An A-submodule is a subset of A which is closed under +, 0,− and also closed under
scalar multiplication of M .
Example 1.9. 0,M are both submodules of M . If {Nj} is a family of sub-A-modules of M , then ∩Nj

and
∑

j]inJ Nj are also submodules of M . Moreover, as we had in rings, if f : M → N an A-module
homomorphism, then the image of any A-submodule of M and any preimage of A-submodule of N are
also A-submodule of each. In particular, Im(f) = f(M) and ker(f) = f−1(0N).
Definition 1.20. we define Quotient A-module M modulo N to be an A-moduleM/N with the scalar
multiplication: A×M/N →M/N ; a · (m+N) = (a ·M) +N .
Remark 1.18. Note as in quotient ring we have a canonical projection

q :M →M/N ; m 7→ m+N

Proposition 1.16 (Universal Property of quotient modules). Let M be any A-module, N ⊆ M be a
sub-A-module, where q : M ↠ M/N quotient homomorphism. For any A-module T and any A-module
homomorphism f : M → T such that ker(f) ⊇ N , then ∃! A-module homomorphism f̃ : M/N → T
making the following diagram commutes:

M T

M/N

f

q
∃!

f̃
(16)

Proof. For any x ∈M/N , choose m ∈M such that q(m) = x. Set f̃(x) := f(m).
Proposition 1.17. The maps:

{A− submodules of M ⊇ N} bijection←→ {A-module of M/N}
q−1(Q) ↢ Q

P 7→ q(P ) = P/N

are inclusion-preserving, bijective, inverse of each other.
Definition 1.21. Let f :M → N be A-module homomorphism. Then we define the following notions:

1. Coker(f) = N/ Im(f) We get N
q
↠ Coker(f);

2. CoIm(f) =M/ ker(f) We get CoIm(f)
ι
↪→M .

Given this, consider the following commutative diagram:

ker(f) M N Coker(f)

CoIm(f) Im(f)

ι f q

f̃

(17)

It is left to the reader to verify the f̃ is indeed an module isomorphism. Summing up, we have:

9
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Definition 1.22. We can define the category of all A-modules with A-module homomorphism, which
forms a abelian category.i.e.,

• it have notions of A-modules;

• ∀A-modules M,N , it have an abelian morphism group HomA(M,N)

• Composition HomA(N,P )×HomA(M,N)→ HomA(M,P ) which is bilinear, which is associative of
composition. and for all A-module M , ∃1M ∈ HomA(M,M) such that 1M ◦ f = f ◦ 1M = f
To make it an abelian category, we request the following properties:

• Existence of zero module 0 such that HomA(M, 0) = 0 = HomA(0,M) for all M .

• Existence of ⊕ of arbitrary family {Mi}i∈I such that:

HomA(
⊕
i

Mi, N) =
∏
i

HomA(M,N)

• For any A-module homomorphism, f :M → N , existence of kernel ker(f) and inclusion ι : ker(f) ↪→
M and existence of cokernel Coker(f) and quotient q : N ↠ Coker(f).

• Induced homomorphism CoIm(f)→ Im(f) is always isomorphism.

Remark 1.19. Here we shall characterize kernel and cokernel using categorical terms:
the kernel ker(f) is the object such that HomA(T, ker(f)) ∼= {φ ∈ HomA(T,M) : f ◦φ = 0 ∈ HomA(T,N)};
the cokernel ker(f) is the object such that HomA(Coker(f), S) ∼= {ψ ∈ HomA(N,S) : ψ ◦ f = 0 ∈
HomA(M,S)}. Expressing them using commutative diagram:

T

ker(f) M N Coker(f)

S

φ0
φ 0

i f

0 ψ

q

ψ0

(18)

Theorem 1.2 (Isomorphism theorem for modules).

1. Any A-module homomorphism f : M → N , it induces a canonical isomorphism f̃ : M/ ker(f) ∼=
Im(f)

2. For any surjective A-module homomorphism f : M → N , it induces an canonical isomorphism
f̃ :M/ ker(f) ∼= N .

3. If M1,M2 ⊆M are submodules. then ∃ canonical isomorphism: M1

M1∩M2

∼= M1+M2

M2

4. If N ⊆M ⊆ L are inclusion of modules, then ∃ canonical isomorphism L/N
M/N

∼= L/M

10
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1.5 Free modules
Definition 1.23. Let S be a set. The free A-module on set S is

A⊕S =
⊕
s∈S

As = {formal sums
∑
s∈S

ais : ai ∈ A, almost all 0}

.
Proposition 1.18 (Universal property of free module). For any A-module M and the set as ∈ Ms∈S,
then ∃!A-module homomorphism f : A⊕S →M such that ∀s ∈ S, f(s) = as.
Definition 1.24. We define A-module M is a free module if ∃ some set S and ∃ A-module isomorphism
A⊕S ∼= M .
Remark 1.20. Note a priori the set S need not be unique and need not have a well-defined cardinality.
Proposition 1.19. Suppose A ̸= 0, A⊕S ∼= A⊕S′ as A-modules ⇐⇒ S is bijective with S ′ as sets.

Proof. One direction is clear via universal property of free modules. For another direction, suppose A⊕S ∼=
A⊕S′ as A-modules. Since A ̸= 0, we yield a maximal ideal m ⊆ A, consider submodule f : m · A⊕S ∼=
m · A⊕S′ , for f respects the scalar multiplication. Pass them to quotient modules, which we produce:

(A⊕S/m · A⊕S = (A/m)⊕S
f∼= (A/m)⊕S

′

But k := A/m is a field, then f̃ is then isomorphism is k-vector spaces k⊕S and k⊕S′ . Since in such the
notion of dimension is unique, we shall have the desired result.
Remark 1.21. For noncommutative rings the above statements are in general not true. Consider A0 :=
{N× Nmatrices with entries in C} which contains two-sided ideals of all finite-rank matrices, the later of
which we denote by I. then let A := A0/I, which we can show A ∼= A⊕n∀n ∈ N as A-module!

The previous arguments allows us to give a concerted definition of the following:
Definition 1.25. For commutative rings A and free A-module M , define rank to be rankA(M) := |S| for
any set S such that A⊕S ∼= M .

1.6 Finitely generated modules
Definition 1.26. A module M is finitely generated if ∃ finite subset {m1, ...,mn} ⊆M such that M is
the module generated by m1, ...mn, which is equivalent to say M =

∑m
i=1A ·mi.

Remark 1.22. The above definition can be characterized by the canonical homomorphism from the free
module A⊕n for some n ∈ N (not unique) to M via sending ei to mi respectively.
Definition 1.27. An A-module M a simple(irreducible) if M ̸= 0 and ∀ submodules N ⊆ M , N = 0
or N =M .
Example 1.10.

• A is a field. Then any simple A-module is the A-vector space of dimension 1.

• A = Z. Then simple Z/p for some prime ideal p.

• simple A-modules are generated by one element.

Proposition 1.20.

11
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• Let M ̸= 0 be a A-module, then ∃ simple subquotient(i.e., the quotient between its submodules) of
M

• Let M ̸= 0 be a A-module be finitely generated, then ∃ simple quotient of M

Proof. for the first part, note M ̸= 0, then pick any M ̸= 0 in M and set M ′ = A ·m ∈ M , then we see
A

f
↠M ′ is surjective sending 1 7→ m whose ker(f) ⊊ A. We can further choose maximal ideal m ⊆ A such

that ker(f) ⊆ m. Then M ′′ := f(m) is a proper submodule of M ′. Then M ′/M ′′ ∼= A/m as A-module,
which is simple.
As for the second part, let m1, ...,mn be the generatoor of M , choose A-submodule M ′ ⊆ M maximal
submodule of M which excludes m1, ...,mn. (simply apply the methodology of which we used to find
the maximal ideal, here is where the finitely-generated property plays a role). Then M/M ′ ̸= 0. By
maximality, it is simple.
Example 1.11. Z as a Z-module is finitely generated has no simple sub-module.
Example 1.12. Q as Z-module is not finitely generated and it has no simple quotient. To see this,
consider some simple quotient M . Then let q : Q ↠ M , then N := ker(q) ⊊ Q. Pick x ∈ Q\N . Then for
any p prime, x/p ∈ Q implies x/p ∈ Q/N . Thus x+N ∈M = Q/N is divisible by p. Then ∃y +N ∈M
such that p(y +N) = x+N . Hence by contradiction, we see M ̸∼= Z/p.

We assume the readers are familiar with the basic terms of exact sequence and short exact sequence.
Those who are foreign to these terms can consult any introductory texts in homological algebra. We shall
henceforth introduce some tricks.
Remark 1.23. Any long exact sequences can be broken up to short exact sequences. Consider the
following commutative diagram:

0 0

Mi/f(Mi−1)

· · · Mi−1 Mi Mi+1 · · ·

f(Mi) Ni+1

0 0 0

fi−1

fi−1

fi (19)

Theorem 1.3 (Snake’s lemma). Consider the following diagram. From the blue blocks of maps, in which
the horizontal sequences exact, there induced the long exact sequence, as shown in the dashed red line. In
particular, ∃ a canonical homomorphism δ : ker f ′′ → Coker f ′ making the resulting sequence exact.

12
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0 keru ker f ′ ker f ker f ′′

M ′ M M ′′ 0

N ′0 N N ′′

Coker f ′ Coker f Coker f ′′ Coker s 0

δ

u v

f ′ f f ′′

r s

Proof. first note the all the vertical and horizontal lines are exact. We first consider the following con-
struction:

1. Start with x′′ ∈ ker f ′′, which is mapped to x′′ ∈M ′′

2. choose x ∈M such that v(x) = x′′. Apply f , we have y : f(x) ∈ N .

3. Choose(Verify it we can choose indeed!) that y′ ∈ N ′ such that r(y′) = y such that y′ is mapped
to y′ ∈ Coker(f ′).

4. Define δ(x′′) = y′

The following is left to the readers to show:

• δ(x′′) is well-defined.

• δ is indeed an A-module homomorphism.

• ker(r) = Im(δ) and ker(δ) = Im(v).i.e., the map is indeed exact.

Remark. One is to note that the aforementioned techniques is elementary in homology theory and re-
spectively in homological algebra. Moreover, note the snake’s lemma holds for ANY ABELIAN CAT-
EGORY. The reader who has interest may consult the following article:
http://therisingsea.org/notes/DiagramChasingInAbelianCategories.pdf

Now we start our discussion in additive functors.
Definition 1.28. Let C be a given collection of A-modules, Let G be an abelian group. Then an additive
functor in C is a any map λ : C → G such that ∀ exact sequences:

0 M ′ M M ′′ 0 (20)

with M ′,M,M ′′ ∈ C , one has λ(M) = λ(M) + λ(M ′′).
Example 1.13. When C = all finite-dimensional vector spaces, then dim is an additive functor.
Proposition 1.21. Let 0 → M0 → M1 → · · · → Mn−1 → Mn → 0 is exact and kernel of each homo-
morphism belong to C and each Mi ∈ C , then for any additive functor λ : C → G, one has the Euler
characteristic

∑n
i=0(−1)iλ(Mi) is zero.

Proof. Break the long exact sequence into the short exact sequence 0 → Ni → Mi → Ni+1 → 0 for
i = 0, ..., n using the previous trick, where N0 = 0 = Nn+1 and Ni is kernel of some homomorphisms.
Then Ni ∈ C . Then ∀i, λ(Mi) = λ(Ni) + λ(Ni+1) by additive functor property, then

∑∞
i=0(−1)iλ(Mi) =

λ(N0) + (−a)n+1λ(Nn+1) = 0. Hence λ(0) = λ(0) + λ(0) implies λ(0) = 0G.

13
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Definition 1.29. A (finite) chain of submodule of M is a (finite) sequence of submodule 0 = M0 ⊊
M1 ⊊ ... ⊊Mn =M . We define the length of the chain to be the number of ⊊ involved.
Definition 1.30. We define the above chain to be a composition series if it cannot be refined to a
longer chain. i.e., we cannot insert more intermediate terms.
Example 1.14. Consider Z as a Z-module does not have composition series. Suppose to the contrary
0 = M0 ⊊ ... ⊊ Mn = Z a composition series. Consider Mn−1 ⊊ Z an abelian group, then Mn−1 = dZ for
some d ̸= ±1. If d = 0, then clearly nZ is the intermediate term. If d ̸= 0, then consider Mn−2 ⊊ Mn−1

which is eZ. The same logic applies, showing that e ̸= 0. Consecutively applying it, either the series
terminates, in which we yield a contradiction, or the series does not terminate.
Example 1.15. On the other hand, any finite abelian group G as a Z-module has a composition series,
then by the structural theorem of abelian group the series 0 ⊊ pn−1Z/pnZ ⊊ ... ⊊ Z/pnZ is the desired
composition for one component.
Definition 1.31. An A-module M has finite length if it has a composition series and we define the
length to be the length of an choice of composition series.
Remark 1.24. The well-definedness of the length of M is substantiated via the following theorem:
Theorem 1.4 (Jordan-Hölder theorem). Any two composition series of M which has same length and
has same isomorphism class of subquotients.
Remark 1.25. The theorem endowed all the finite-length A-modules with another additive functor:

length:{finite length A-module}−→ Z

Now we return to exploit some properties of exact sequences.

Proposition 1.22. If M1
f→ M2

g→ M3 → 0 is exact ⇐⇒ for any A-module N , the following sequence
is exact:

0→ Hom(M3, N)
g∗→ HomA(M2, N)

f∗→ HomA(M1, N)

Remark 1.26. Note f can behave as a homomorphism of abelian groups via a contravariant functor
between A-modules and abelian groups as the following:

HomA(−, N) :M 7→ HomA(M,N)

via the followings commutative diagram:

M1 M2

N

f

f∗(ψ):=ψ◦f
ψ

(21)

In the spirit as above, we have the following:

Proposition 1.23. If 0 → M1
f→ M2

g→ M3 is exact ⇐⇒ for any A-module N , the following sequence
is exact:

0→ Hom(N,M3)
f∗→ HomA(N,M2)

g∗→ HomA(M1, N)

Remark 1.27. Note here f induces a morphism: Hom(N,M1)→ Hom(N,M2), ψ 7→ f ◦ ψ. Essentially
we have a functor again between A-module and abelian groups. Hom(N,−) which is covariant this time.
Due to the symmetry in argument we shall only prove the second proposition:

Proof. the ⇒ direction is rather straightforward hence left to the reader. As for the ⇐ direction:

14
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1. f is injective: Take N = ker f . So there is the natural inclusion i : N ↪→M1. i.e., i ∈ Hom(N,M1).
But f∗(i) = f ◦ i = 0. Hence by the injectivity of f∗ we have i = 0. Thus f injective.

2. Im f = ker g: take N =M1. take ϕ = 1M1 ∈ Hom(N,M1), then g∗f∗ϕ = 0⇒ g ◦ f ◦ 1M1 = 0. Hence
Im f ⊆ ker g. Take N = ker g ⊆ M2, let i : N ↪→ M2 be natural inclusion, so i ∈ Hom(N,M2), and
g ◦ i = 0. Now by exactness, i ∈ Im f∗, i.e., ∃ψ ∈ Hom(N,M1) such that i = f ◦ ψ.

Remark 1.28. Alternatively for the second part of the proof above, we can take the test module to be A
directly. Moreover, we call HomA(−, N) and HomA(N,−) are exact on the left, in justifying that both
of them acting on the exact sequence and produces a left-exact sequence.
Definition 1.32. We define the A-module N is projective (resp. injective) if Hom(N,−) (resp.
Hom(−, N)) is left-exact functor.

1.7 Tensor product
Given two A-modules M and N , consider functors f :M ×N → P . Then f is an A-bilinear map if:

1. for any n ∈ N , f(−, n) ∈ HomA(M,P )

2. for any m ∈M , f(m,−) ∈ HomA(N,P ).

Consider, SM,N = {(P, f)|P is a A-module; f :M ×N → P bilinear}. Note SM,N ̸= 0 since (0, 0) ∈ SM,N .
Proposition 1.24 (Universal property of tensor product). ∃(T, i) ∈ SM,N with the following universal
property: Given any (P, f) ∈ SM,N , ∃! A-linear map f : T → P such that f ◦ i = f , i.e., for any P , one
has a canonical bijection:

{Bilinear form f :M ×N → P}↔ HomA(T, P )

Moreover, the pair (T, i) is unique up to an unique isomorphism. In terms of commutative diagram, we
have:

M ×N T

P

i

f
∃!f (22)

Proof. Existence is proven henceforth. Uniqueness is proven replacing the test object P by T ′ and simul-
taneously applying the universal property to T and T ′, as always.
Consider the free A-module C generated by the following elements of M × N , where C consists of all
formal finite linear combinations of (m,n) ∈ M × N . A typical element in C has the following form∑n

i=1 ai(mi, ni). Analytically we may think C as

{f :M ×N → A|f with finite support}

Let D ⊆ C the A-submodule generated by:

• (a1m1 + a2m2,m)− a1(m1,m)− a2(m2,m);

• (m, a1m1a2m2)− a1(m,m1)− a2(m,m2).

15
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i.e., D is the equivalent relations we wish to built up in T . Set T = C/D. Now we proceed to check T
fulfills universal property. Consider the following diagram:

M ×N T = C/D

P

i

f

f

(23)

Uniqueness of f follows from image ofM×N under i generated T as A-modules, so for all (m,n) ∈M×N ,
f is specified by f ◦ i = f . We hence define f : C → P by f(m,n) = f(m,n). Then the A-bilinearity of f
implies that D ∈ ker f . Hence f factors through D, i.e, C/D f→ P .
Definition 1.33. We set M ⊗AN to be the pair (T, i) in the proposition above. Write the pair (m,n) to
be m⊗ n.
Example 1.16.

• A = Z : Z/2Z⊗Z Z/3Z = 0, for 1⊗ 1 = −2⊗ 1 = 0⊗ 1 = 0.

• Z · 2 =M0 ⊆ Ze :=M , and N = Z/2Z. Then M0 ⊗N = Z/2Z, BUT M ⊗N = 0.

• When A = F be a field and M,N are finite-dimensional vector spaces over F with bases {mi}, {nj}
respectively. then {mi⊗nj} forms a basis ofM⊗FN . To prove this, dimFM⊗FN ≤ dimFM ·dimFN
is easy to verify. To see the other side, note via universal property one has ∀F-vector space P ,
HomF(M ⊗ N,P ) ∼= {F − bilinear map : M × N → P}. In particular, take P = F, one has
M ⊗ N∗ ∼= {F − bilinear map : M × N → F}, which proves the assertion since M and N are
finite-dimensional spaces.

Now we discover some properties of tensor product.

• Functoriality. If M1
f→M2 and N1

g→ N2, then:

M1 ⊗A N1
f⊗g−→M2 ⊗A N2

m1 ⊗ n1 7→ f(m1)⊗ g(n1)

To verify this, applying the universal property to Φ :M1⊗N1 →M2⊗AN2, (m,n) 7→ f(m)⊗g(n).

• Canonical isomorphisms

1. ”Commutativity”:M ⊗N ∼= N ⊗M, m⊗ n 7→ n⊗m
2. Associativity:(M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P ) (m⊗ n)⊗ p 7→ m⊗ (n⊗ p)
3. Distributivity: (M ⊗N)⊗ P ∼= M ⊗ P ⊕N ⊗ P, (m,n)⊗ p 7→ (m⊗ p, n⊗ p)
4. A⊗AM ∼= M, a⊗m 7→ am

5. Hom(M ⊗N,P ) ∼= Hom(M,Hom(N,P ))

Proof. We shall only prove the last case. Note

Hom(M ⊗A N,P ) ∼= {bilinear map:M ×N → P} ∼= Hom(M,Hom(N,P ))

.

16
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Proposition 1.25. If M1 →M2 →M3 → 0 is exact, then for any P ,

M1 ⊗ P →M2 ⊗ P →M3 ⊗ P → 0

is exact.

Proof. Note this is straightforward from the previous proposition tensoring N with a right-exact sequence,
by taking N to be Hom(P,Q) for any Q, then via the equality Hom(Mi,Hom(P,Q)) ∼= Hom(M ⊗ P,Q),
one yields the desired exactness.
Remark 1.29. We have shown that:

−⊗A N : {A−modules} → {A−modules} M 7→M ⊗A N

is right exact. Note the functor is not exact. When one takes A = Z and Mi = Z for all i, and N = Z/2Z.
Then 0 → M1 → M2 is exact, sending m to 2m. But the tensor product of the exact sequence, being
0→ Z/2Z→ Z/2Z is not exact, since it sends x⊗ 7→ 2x⊗ 1 ∼= x⊗ 2 = 0.
Definition 1.34. If N is the A-module such that −⊗A N is an exact functor, i.e., it is both left-exact
and right-exact functor, then N is defined to be a flat module.

The flat modules can be characterized by the following proposition:
Proposition 1.26. Let N be an A-module. Then the following are equivalent:

1. N is flat.

2. ∀ short exact sequence, 0→M ′ →M →M ′′ → 0, the sequence 0→M ′⊗N →M ⊗N →M ′′⊗N
is exact.

3. ∀ injective A-module homomorphism f :M ′ →M , the homomorphism f ⊗ 1N :M ′ ⊗N →M ⊗N
is injective.

4. (3) holds for all finitely generated A-modules M ′,M .

Proof. (1) ⇐⇒ (2) via breaking the long exact sequence to short ones, while (2) ⇐⇒ (3) was proven
already.
(3)⇒ (4) is clear. For the other direction, given u =

∑
im

′
i⊗ni ∈ ker(f ⊗ 1N),hence 0 =

∑
i f(m

′
i)⊗ni ∈

M ′⊗N . Now let M ′
0 be the submodule of M ′ generated by m′

i and M0 be that of M generated by f(mi)
′,

both of which are finitely generated. Let f0 be the restriction of f :M ′ ↪→M to M ′
0 to M ′

0, which means
that (f0⊗1)(u0) = 0. Since both M0 and M ′

0 are finitely generated, f0⊗1 is injective by the presumption,
hence u0 = 0, which implies u = 0.

1.8 Algebras
Recall the definition of A-algebras, we now consider the finitely generated algebras.
Definition 1.35. B is a finitely generated A-algebra if there is a finite subset Σ ⊆ B such that B is
generated by bA∩Σ as a ring. This is equivalence to say, that A[Σ] ↠ B. We say B is a finite A-algebra
if B is finitely generated as an A-module.
Example 1.17. When B = A[x] is a finitely generated A-algebra, but it is not finite, for it is free of
infinite rank as A-module, while C = A[x]/[x3] is a finite A-algebra.

Now suppose M is an A-module, while B an A-algebra. Since B is naturally an A-module, one
can form the A-module M ⊗A B ∼= B ⊗A M . Then this M ⊗A B has a natural B-module structure:
b · (b1 ⊗m1) = (bb1)⊗m1.
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Definition 1.36. We call the aforesaid B-module B ⊗AM the base change (or scalar extension) of
M via f : A→ B.
Example 1.18. When f : R→ C. thenM as an R-vector space and C⊗M is simply the complexification,
sending ei 7→ 1⊗ ei. More generally, if M is generated by {mi}, then B ⊗AM is generated as B-module
by {1⊗mi}.

Now consider if B,C are both A-algebras and hence A-modules, then B⊗AC has a natural ring/algebra
structure, where the multiplication is (b1⊗ca)·(b2⊗c2) = (b1b2⊗c1c2). first we check the map is well-defined:
First consider the following A-multilinear map:

B × C ×B × C → B ⊗A C
(b1, c1, b2, c2) 7→ b1b2 ⊗ c1c2

which induces an A-bilinear map on (B ⊗ C)⊗A (B ⊗A C)→ B ⊗A C, the ”sub-multiplication” of which
gives the desired multiplication in B ⊗A C. Summarizing it, we have the following diagram:

B ⊗A C

B C

A
fB

f

fC

(24)

where f(a) = fB(a)1B ⊗ 1C = 1B ⊗ fC(a). Motivated by such, the A-algebra B ⊗A C equipped with the
algebra structure f : A→ B ⊗A C can be characterized by the following universal property:
Proposition 1.27. For any A-algebra D and a respective commutative diagram:

D

B C

B ⊗A C

ϕB ϕC

∃! ϕ (25)

∃!ϕ : B ⊗A C → D an A-algebra homomorphism.

Proof. We leave it as an exercise to the readers to show this universal property. Note ϕ(b⊗c) = ϕB(b)ϕB(b)·
ϕC(c).
Remark 1.30. Thus B⊗AC is the ”direct sum” of B and C in the category of A-algebra. When applying
the functor ”Spec” to transfer it to the geometric side, we have Spec(B ⊗A C), which is named as the
fiber product of SpecB and SpecC over SpecA considering the following diagram:

Spec(B ⊗A C)

Spec(B) Spec(D) Spec(C)

Spec(A)

∃!

(26)

Suppose A and B are rings, then an (A,B)-bimodule is a set M such that M is both an A-module
and a B-module and for all a ∈ A, b ∈ B,m ∈M , we have a(bm) = b(am).
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Example 1.19. If f : A→ B and ring homomorphism. then B is an A-algebra. Then any B-module M
has a obvious bi-module structure.
Lemma 1.3. If A,B are rings, where M is a A-module, N is a (A,B) -bimodule and P is a B-module.
Then M ⊗A N and N ⊗B P are (A,B)-module. Moreover, there is a canonical isomorphism

(M ⊗A N)⊗B P ∼= M ⊗A (N ⊗B P )

of (A,B)-bimodules.

Proof. The B-module structure on M ⊗A N is given by b ∈ B, where Mb : N → N sending n 7→ b ·m is
A-linear. then by functoriality, one has: M ⊗ ANtoM ⊗A N sending m⊗ n 7→ m⊗ b · n. Define

(M ⊗A N)⊗B P
f→M ⊗A (N ⊗B P )

g−1

→ (M ⊗A N)⊗B P

Consider fp :M ⊗N →M ⊗A (N ⊗B P ) sending (m,n) 7→ m⊗ (n⊗ p). then fp induces a homomorphism
from M ⊗A N . Now define f sends (x, p) to fp(X) , then we have a B-bilinear map. g is defined in a
similar manner.
Proposition 1.28 (Preserving flatness by base change). Suppose M is a A-module, B is an A-algebra. If
M is a flat A-module, then B ⊗AM is a flat B-module.

Proof. Let N := B⊗AM . Given N1 → N2 → N3 exact, one needs to show N1⊗BN → N2⊗BN → N3⊗BN
exact. Note B,N,Ni are all (A,B)-bimodules, now the second sequence is obtained form the first via
tensoring M , i.e.,

Ni ⊗B N = Ni ⊗B (B ⊗AM) ∼= Ni ⊗AM
NowM is flat, hence the second is exact sequence of A-modules, and hence a exact sequence of B-modules.

1.9 Localization
Definition 1.37. Let A be a ring. then S ⊆ A is a multiplicatively closed (mult-closed) if 1 ∈ S
and S is closed under multiplication.
Example 1.20.

1. A is an integral domain. then S = A\{0} is mult-closed.

2. Take a ∈ A, then S = {an : n ∈ N} is mult-closed.

3. Let p ⊆ A be the prime ideal, then S = A\p is mult-closed.

Note S functions as a denominator in localization.
Remark 1.31. Consider the set A×S, we would like to endow the product with an equivalence relation.
First consider (a, s) ∼ (b, t) ⇐⇒ at = bs. Nevertheless, the transitivity cannot be fulfilled unless S has
no zero divisor. Hence it gives the right definition:

(a, s) ∼ (b, t) ⇐⇒ ∃u ∈ S : u(at− bs) = 0

Definition 1.38. Let S−1A be the set of equivalence classes with addition: a
s
+ b
t
= at+bs

st
and multiplication:

a
s
· b
t
= ab

st
, which makes S−1A into a ring. Moreover, there is a natural ring homomorphism:

f : A→ S−1A a 7→ a

1

We call the quotient ring S−1A the localisation of A with respect to S.
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Example 1.21.

1. When A is an integral domain, and S = A\{0}. Then S−1A is the field of fractions of A.

2. S−1A = {0} ⇐⇒ 0 ∈ S

3. p ∈ A prime, S = A\p Then S−1A =: Ap the localization of A at p

4. S = {fn : n ∈ N}, then S−1A = { a
fn

: n ∈ Z, a ∈ A} a localization of A away from f .

Remark 1.32. It is straightforward that ∀s ∈ S, f(s) ∈ S−1A is a unit. Hence if I ⊆ A is an ideal such
that I ∩ S ̸= ∅, then the ideal of S−1A generated by f(I) is indeed the whole ring.

The pair of A→ S−1A satisfy the following universal property:

Proposition 1.29 (Universal property of localization). Consider the pair Σ := {A ϕ→ B : ϕ(S) ⊆ B×}.
Note f ∈ Σ. Then given any ϕ : A→ B in Σ, ∃!ϕ̃ : S−1A→ B such that the following diagram commutes:

A B

S−1A

ϕ

f ∃!ϕ̃ (27)

Proof. We shall only construct the existence. The well-definedness and uniqueness are left to the reader.
Note ϕ̃(a

s
) = ϕ̃(a

1
)ϕ̃(1

s
).

Now we shift to discuss the localization of A-module. Let S ⊆ A, and M is an A-module. Consider
M × S and define equivalence relation

(m1, s1) ∼ (m2, s2) ⇐⇒ ∃t ∈ S : t(s2m1 − s1m2) = 0

Definition 1.39. We define the localization of A-module ar S to be S−1M =M × S/ ∼.
Example 1.22.

1. S = {fn : n ∈ N}. Then S−1M =Mf .

2. S = A\p, then S−1M =Mp.

Observe that S−1M are S−1A-module with conventional addition and multiplication. Then if ϕ :M → N
is an A-module homomorphism, then it inherits an S−1A-module homomorphism:

S−1ϕ : S−1M → S−1N

m

s
7→ ϕ(m)

s

Moreover, M ϕ→ N
ψ→ P , then we have S−1ϕ ◦ S−1ψ : S−1M → S−1N → S−1P . That is:

Definition 1.40. M → S−1M is a functor from A -module to S−1A-module, which is defined as local-
ization functor.

We now discuss the basic properties of localization.

1. S−1M ∼= S−1A⊗AM, am
s
7→ a

s
⊗m. To see this , note (a

s
,m) 7→ a

s
is A-bilinear, which induces the

map upon tensor product. To prove the injectivity, note if
∑

i
aimi

si
= 0, set

∏
i si = s,

∏
j ̸=i sj = ti,

we conclude: ∃u ∈ S : u(
∑

i aitimi) = 0 ∈ M . Hence ai
si
⊗mi =

∑
i
aiti
s
⊗mi =

1
s
⊗ (

∑
i aitimi) =

1
su
⊗ u(

∑
i(aitimi)) = 0.
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2. localization is exact: If M1
ϕ→ M2

ψ→ M3 is exact, then S−1M
S−1ϕ→ S−1M2

S−1ψ→ S−1M3 is
exact. Note since ψ ◦ ϕ = 0 , then S−1ψ ◦ S−1ϕ = 0,. Conversely, given m2

s
∈ S−1M2 such that

S−1ϕ(m2

s
) = 0. sp ∃t ∈ S such that t · ψ(m2) = 0. So tm2 ∈ kerψ = Imϕ. Then m2

s
= S−1ϕ(m1

ts
).

i.e., ker(S−1ψ) = Im(S−1ϕ).

3. If N,P ⊆M are sub-A-module, then:

(a) S−1(N + P ) = S−1N + S−1P

(b) S−1(N ∩ P ) = S−1N ∩ S−1P

(c) S−1(M
N
) = S−1M

S−1N

4. localization commutes with tensoring:

S−1(M ⊗A N) ∼= S−1M ⊗S−1A S
−1N

1

st
m⊗ n← m1

s
⊗ n

t
m⊗ n
s
→ 1

s
m⊗ n

alternatively, S−1M ⊗S−1A S
−1N = (S−1A ⊗A M) ⊗S−1A (S−1N) ∼= M ⊗A (S−1A ⊗S−1A S

−1N) =
M ⊗A (N ⊗A S−1A) = (M ⊗A N)⊗A S−1A = S−1(M ⊗A N).

Corollary 1.3. S−1A is a flat A-module.

Proof. Use (1) and (2) of the basic properties above. Now we consider this local behaviour in a more
general scope.
Definition 1.41. Suppose P is a property of modules. Then we say P is a local property if an A-module
M satify P ⇐⇒ ∀p ∈ SpecA,Mp satisfy P as a Ap-module.

Firstly Vanishing is a local property.
Proposition 1.30. the following are equivalent:

1. M = 0

2. Mp = 0 ∀p ∈ SpecA

3. Mm = 0 ∀ maximal ideal m ⊆ A

Proof. (1)→ (2)→ (3) is clearly. Now assume the last, take m ∈ M , suppose m ̸= 0, then consider
AnnA(m) = {a ∈ A : am = 0} is an ideal in A. Note m ̸= 0 implies ∃ a maximal ideal m ⊇ AnnA(m).
But then m ̸= − in Mm, which is a contradiction, since this implies ∀a ∈ A\m, am ̸= 0.
Corollary 1.4. the following are equivalent:

1. ϕ :M → N is injective.

2. ϕp :Mp → Np is injective ∀p ∈ SpecA.

3. ϕm :Mm → Nm is injective ∀ maximal ideal m.

Secondly Flatness is a local property.
Proposition 1.31. The following are equivalent:
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1. M is flat.

2. Mp is flat ∀p ∈ SpecA.

3. Mm is flat ∀ maximal ideal m.

Proof. From (1)→ (2). Suppose (∗) : N1 → N2 → N3 is a exact sequence of Ap-module. We want to show
(∗∗) : N1⊗ApMp → N2⊗ApMp → N3⊗ApMp is exact. But note (∗) is exact as Ap-modules ⇐⇒ it is exact
as A-modules ⇐⇒ (∗)⊗AM is exact as A-modules. Now note N1⊗ApMp = N1⊗Ap (Ap⊗AM) = N1⊗AM .
Hence (*) ⊗ApMp is exact as Ap-module.
As for (3)→ (1), It suffices to show: if 0→ N → P is exact, then 0→ N ⊗AM → P ⊗AM is exact. Note
N → P is injective⇒ Nm →Mm is injective. Hence by the assumption, we have Nm⊗AmMm → Pm⊗AmMm

is injective. Now Nm⊗AmMm
∼= (N⊗AM)m, so is Pm⊗AmMm

∼= (P⊗AM)m. Then by previous proposition,
we have N ⊗AM → P ⊗AM is injective.

We shall now consider the properties of ideals. Consider f : A → S−1A sending a to a
1
. We have the

following diagram:
I f−1(I)

{ideals of S−1A} {ideals of A}

f(a) · S−1A a

f−1

f−1=f∗

S−1

S−1

(28)

Note f(a) · S−1A ∼= S−1a ∼= S−1A⊗A a.
Remark 1.33. If a ∩ S ̸= ϕ, then S−1a = S−1A, hence S−1 is not injective.
Proposition 1.32.

1. S−1 ◦ f−1 = 1. In particular, f−1 is injective, S−1 is surjective.

2. f−1 ◦ S−1(a) = {x ∈ A|x · s ∈ a for some s ∈ S} ∀a ∈ A. Hence S−1a = S−1A ⇐⇒ a ∩ S ̸= ∅.

3. f−1 and S−1 induces bijection upon the sets: {p ∈ Spec(A) : p ∩ S = ∅} ↔ {SpecS−1A}

Remark 1.34. Assuming the above proposition, we consider the map f : A → Ap which induces the
injective f−1 : SpecAp

f−1

↪→ SpecAp. Hence Im(f−1) = {q ∈ Spec(A)|q ⊆ p}.

Proof.

1. Given b ∈ S−1A a prime ideal, then S−1(f−1(b)) ⊂ b. Conversely, if a
s
∈ b, then a

1
= f(a) ∈ b.

Hence a ∈ f−1(b) and a
s
∈ S−1(f−1(b)).

2. First note:

x ∈ f−1(S−1a) ⇐⇒ f(x) ∈ S−1a ⇐⇒ x

1
=
a

s
for some a ∈ a, s ∈ S

⇐⇒ t(xs− a) = 0 for some t ∈ S ⇐⇒ stx ∈ a for some t ∈ S.

Now it left to show if S−1a = S−1A implies a ∩ S ̸= ∅. Note if f−1(S−1A) = A then 1 ∈ f−1(S−1a),
then ∃s ∈ S such that 1 · s ∈ a.
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3. If p ∈ Im(F−1), say p = f−1q, then p ∩ S = ∅. Else S−1p = S−1A, where S−1(f−1(q)) = q. So
f−1 : SpecS−1A→ {a ∈ SpecA|a ∩ S = ∅}. We now want to show S−1a is prime. To prove it, note
S−1A/S−1a ∼= S−1(A/a) where A/a is an integral domain. Finally, f−1(S−1a) = a by (2).

Remark 1.35. Consider f : A → Ap, Spec(A)
f−1

↪→ SpecAp = {qAp : q ⊆ p}. Note qAp ⊂ pAp. In
particular, pAp is the unique maximal ideal in Ap. This give rises to the following definition:
Definition 1.42. We define a ring A to be a local ring if A has a unique maximal ideal m. We further
define the field of fraction F = A/m to be the residue field of A.
Example 1.23. Given any A, p ∈ SpecA, then Ap is a local ring. In particular, A = Z and p is prime
ideal of A. Then Ap = {mn : p ∤ n}, in which the unique maximal ideal m− {pm

n
: p ∤ n}.

Example 1.24. The following example is itself of some significance in the realm of functional analysis.
Recall C(X), in which X is a topological space. We take x0 ∈ X, then mx0 = {f ∈ C(X)|f(x0) = 0} is
the maximal ideal of C(X). To se this , consider the following diagram:

f f(x0)

C(X) R

C(X)/mx0

evx0

evx0

∼=

(29)

Then C(X)mx0 = {f/g : f, g ∈ C(X), g /∈ mx0}/ ∼, where the equivalence relation is defined by:

f1/g1 ∼ f2/g2 ⇐⇒ ∃g3 /∈ mx0 , (g2f1 − f2g1)g3 = 0

i.e., C(X)mx0 = {(U, f) : U is a neighbourhood of x0, f : U → R continuous}/ ∼. Note in this scenario,
(U1, f1) ∼ (U2, f2) ⇐⇒ ∃ neighbourhood V ⊆ U1 ∩ U2 which contains x0, such that f1|V = f2|V . Hence
C(X)m is a local ring with unique maximal ideal {(U, f) : f(x0) = 0}.
Remark 1.36. Note in this example, we have degraded the global property, i.e., the continuity upon the
whole space, to some local property on neighbourhood, the tactic of which is commonly used and are none
the less of great significance in mathematics.
Lemma 1.4. m ⊆ A is a maximal ideal. Then: A is local ⇐⇒ ∀x ∈ A\m are unit ⇐⇒ ∀x ∈ m, 1 + x
are units.

Proof. The first ⇐⇒ is easy to prove and is hence handed to the readers. To see the second ⇐⇒ , take
x ∈ A\m, we want to show y ∈ A×, but since m and x generates the whole ring, thus ax+ y = 1 for some
a ∈ A and y ∈ m. i.e., ax = 1− y ∈ A× ⇒ x ∈ A×.

We now proceed to state a useful yet easily stated lemma:
Lemma 1.5 (Nakayama’s Lemma). Let A be a local ring, in which m the maximal ideal. Let F be
the residue field. Let M be a finitely generated A-module, consequently M/mM is a finite dimensional
F-vector space. Hence suppose {xi} ⊂M is a basis of M/mM , then {xi} generates M as a module.
Remark 1.37. This lemma essentially states that the basis of the quotient ring controls the behaviour of
the whole (rather strictly confined) ring.
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Proof. Let N be the submodule spanned by {xi}, we want to show M = N . Note m ·M/N = M/N .
Since M = mM + N . Hence it remains to show if p is a finitely generated A-module with mp = p, then
p = 0. To prove this, choose a minimal set of generators {u1, ..., un}, then un =

∑n
i xiui for xi ∈ m. then

(1−xn) ·un =
∑n−1

i xiui. But observe that 1−xn is a unit by the above proposition, hence the minimality
is contradicted.
Remark 1.38. In an alternative way, we have the following version of Nakayama’s lemma:
Lemma 1.6 (Nakayama’s lemma, version 2). If M is a finite A-module, and a is an ideal lies inside

∩
all

maximal ideals of A, i.e., a is a subset of Jacobson radical, then a ·M =M implies M = 0.
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2 Homological algebra
2.1 Injective and Projective module
Definition 2.1. An A-module P is defined to be projective if ∀ exact sequence · · · →M1 →M2 → · · · ,
the sequence · · ·Hom(P,M1)→ Hom(P,M2)→ · · · is exact.
Remark 2.1. Note the snake’s lemma gives us the freedom to redefine the above terms using short
exact sequences, i.e., ∀ short exact sequence 0 → M ′ → M → M ′′ → 0, the corresponding sequence in
Hom(P,−) is exact. Note the functor Hom(P,−) is covariant.
Proposition 2.1 (characterization of projective module). For an A-module P , the following are equivalent:

1. P is projective module

2. every surjective module homomorphism g :M ↠M ′ and every module homomorphism f : P →M ,
∃ a homomorphism h : P →M ′ such that the following diagram commutes:

P

M M ′′
h

f

g

(30)

i.e., every f emanating from P can be lifted via the surjective homomorphism.

3. Any exact sequence 0→M ′ →M → P → 0 splits.

4. ∃A-module P0 such that P ⊕ P0 is a free A-module.

Proof. For (1) ⇒ (2), consider M ′′ to be the kernel of g : M → M ′, then 0 → M ′′ → M → M ′ → 0 is
clearly exact, hence by definition, we have:

0→ Hom(P,M ′′)→ Hom(P,M)→ Hom(P,M ′′)→ 0

is exact. Hence ∃h ∈ Hom(P,M) such that g ◦ h = f .
(2)⇒ (3), consider the following diagram:

0 M ′′ M M 0

P
h

idP (31)

The sequence splits via the lifted map.
(3)⇒ (4): Consider f : F ↠ P with kernel P0. Then by the splitness we have F ∼= P0 ⊕ P .
(4) ⇒ (1): If P ⊕ P0

∼= F , where F is free, then for any M , Hom(F,M) ∼= Hom(P,M) ⊕ Hom(P0,M).
Now If ψ : M1 → M2 is an homomorphism, then ψ ◦ − : Hom(F,M1 → Hom(F,M2) is constructed in an
canonical way, where it is easy to verify that Hom(P,−) preserves exactness. Hence P is projective.

In a rather symmetric way, we shall define injective modules.
Definition 2.2. An A-module Q is defined to be injective if ∀ exact sequences · · · → M1 → M2 → · · · ,
the corresponding sequence Hom(−, Q) is also exact. Note here Hom(−, Q) is a contracovariant functor.
Remark 2.2. In the same fashion, the aforesaid definitions can be reformulated in terms of short exact
sequences. i.e, if ) → M ′ → M → M ′′ → 0 is exact,then so is 0 → Hom(M ′′, Q) → Hom(M,Q) →
Hom(M ′, Q).
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Proposition 2.2 (Characterization of injective modules). For an A-moduleQ, the following are equivalent:

1. Q is injective.

2. For any injective homomorphism g : M ′ ↪→ M and any homomorphism f : M ′ → Q, the following
diagram commutes:

M ′ M

Q

f

g

h
(32)

3. Every short exact sequence 0→ Q→M →M ′′ → 0 splits.

Proof. The proof of the previous proposition carries over verbatim to this.
Proposition 2.3. A Z-module is Q injective ⇐⇒ it is divisible, that is,

∀m ∈ Z\{0}, the map · ◦m : Q→ Q; x 7→ mx

is surjective.

Proof. First prove the ⇒ direction. Suppose Q is not divisible. Then ∃m ∈ Z\{0} and y ∈ Q such that
∀x ∈ Q such that y ̸= mx. Consider the following diagram where f : Z → Q maps 1 to y and m maps a
to ma. Then by Q being injective module there induces an map g:

Z Z

Q

m

f
g

(33)

Then clearly y = f(1) = g(m) = m · g(1) = mx, a contradiction.
As for the⇐ side, suppose Q is divisible. Then we first show this is true for M ′ :=M +Zx, where x ∈M .
then inductively we attach other elements. If Zx ∩M ′ = 0, then M = M ′ ⊕ Zx, in which case we define
h(m = m′ + lx) = f(m′) + l · 0, hence the homomorphism h : M → Q works. If on the other hand,
Z · x ∩M ′ ̸= 0, then we can pick the smallest d ∈ Z>0 such that d · x ∈ M ′, then by divisibility of the
module we could always found a u ∈ Q such that d · u = f(dx).Now define:

h :M → Q

m = m′ + lx 7→ f(m′) + lu

Verify that h is a well-defined map, in which the assumption that d is the smallest element shall be used.
Also verify that this h as a Z-homomorphism makes the following diagram commutes:

x ∈M ′ + Z · x =M Q

d · x ∈M ′ Q ∋ f(dx)

h

·d

f

(34)

As for general M , one can consider the set of (N, g) where M ′ ⊆ N ⊆ M as a module and g : N → Q
making the following commutes:

M N [ M ]

Q

f
g

(35)
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Note this set is partially ordered by the binary relation:

(N, g) ⪯ (N ′, g′) ⇐⇒ N ⊆ N ′, g = g′|N

Now clearly this family is upper bounded by
∪
iNi, hence applying Zorn’s lemma we yield a maximal

element (N, g). We claim N =M . Suppose if not, then choose x ∈M\N , we consider Ñ := N +Zx ⊆M ,
which is the larger than N .
Example 2.1. Q and Q/Z are both divisible, hence injective.

If A is PID, K ⊂ Frac(A). The proof requires the splitting the exact sequence of :

A× K× {Group of non-zero ideals in K} (36)

Proposition 2.4. For any ring A, A module M , there os a canonical isomorphisms of Z-module between
A-module M and Z-module T :

HomZ(M,T ) HomA(M,HomZ(A, T ))

ψ (m 7→ (a 7→ ψ(am)))

(m 7→ f(m)(1A)) f

∼=

(37)

Proof. Routine check.
Proposition 2.5. Suppose T is divisible Z-module (and hence injective as a Z-module), then HomZ(A, T )
is injective as A-module.

Proof. We want to see HomA(−,HomZ(A, T )) is a right exact functor. But via using the previous propo-
sition, this sums up to show HomZ(−, T ) is exact. But T is an injective abelian group.

With all these preparations, we can now prove the main theorem:
Theorem 2.1. Given any A-moduleM , ∃ injective A-module Q and an injective homomorphismM ↪→ Q.

Proof. Given A-moduleM , which we first regardM as an abelian group, we can choose a divisible abelian
group T and injective abelian group homomorphism: f : M ↪→ T . To see this, consider F := Z⊕S be any
free abelian group, then

HomZ(F,Q/Z) ∼=
∏
s∈S

(Q/Z)

is an injective Z-module. then for any abelian group X, we denote X∨ := HomZ(X,Q/Z), one yield
X∨∨ = HomZ(X

∨,Q/Z), hence there is a canonical homomorphism:

X → X∨∨

x 7→ (ψ 7→ ψ(x))

which is injective. Now given X and X∨, choose free abelian group F and surjective homomorphism
F ↠ X∨ → 0. Apply HomZ(−,Q/Z) = (−)∨. Hence we get 0 → X∨∨ ↪→ F∨, so we show X can be
embedded in side a injective abelian group of F∨.
Now to see the full version, consider M as stated in proposition. Then 0→M

ψ→ T . So ψ ∈ HomZ(M,T )
⇐⇒ f := (m 7→ (a 7→ ψ(am))) ∈ HomA(M,HomZ(A, T )). Hence M → HomZ(A, T ) is a A-module
homomorphism, the later of which is an injective A-module. Verify f is injective, we then obtain the
desired result.
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2.2 Ext and Tor functors for A-module
Given any pair of A module M,N , then ∀n ∈ N, ∃ an A-module (or resp. TorAn (M,N)). Fix M , and for
all short exact sequence 0→ N ′ → N → N ′′ → 0, one has the long exact sequence:

0 HomA(M,N ′) HomA(M,N) HomA(M,N ′′)

Ext1A(M,N ′) Ext1A(M,N) Ext1A(M,N ′′)

Ext2A(M,N ′) · · ·

(38)

and resp. the long exact sequence:

· · · Tor2(M,N ′′)

Tor1(M,N ′) Tor1(M,N) Tor1(M,N ′′)

M ⊗N ′ M ⊗N M ⊗N ′′ 0

(39)

i.e., we can see Ext0A = HomA, and Tor0 = −⊗−.
Having seen this abstract and a bit void definition, we see how to construct Extn(M,N) in concrete

ways. The first way is to fix M first. Then for any A-module N , we want the family of A-module
{Extn(M,N)}n∈N and ∀ homomorphism N → N ′′, we want A-module homomorphism Extn(M,N) →
Extn(M,N ′′) and for all short exact sequence 0→ N ′ → N → N ′′ → 0, we want A-module homomorphism
Extn(M,N ′′)→ Extn+1(M,N ′) such that the exactness holds.

To construct this, we first start with N . Use the fact that ∃ enough injective A-modules, one gets
0 → N

j0→ Q0 where Q0 is an injective A-module. Now get Coker j0, we get Coker(j0) ↪→ Q′, where Q′ is
injective A-module. Hence0 → N

j0→ Q0 j1→ Q′ exact. continuing the process, one yields the long exact
sequence with each Qi injective A-module.

Now apply HomA(M,−) to everything. Hence HomA(M,N) gives an complex (which is not exact in
general):

HomA(M,Q0)
j1◦−→ HomA(M,Q1)

j2◦−→ HomA(M,Q2)
j3◦−→ · · ·

Now define ExtnA(M,N) to be the n-th homology group of this complex, it is easy to verify that the
group fulfills what is required.
Remark 2.3. The true essence of this construction is that up to canonical isomorphism, Extn(M,N) are
independent of choices of Q’s.

Remark 2.4. If f : N → Ñ is a homomorphism, then Qi and Q̃i are their respective right resolution.
Then the naturality gives the respective f i : Qi → Q̃i making the diagram commutes:

0 N Q0 Q1 · · ·

0 Ñ Q̃0 Q̃1 · · ·

f f0 f1 (40)
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A similar commuting diagram can also be yielded between Hom(M,Qi) and Hom(M, Q̃i). And conse-
quently, a map is induced: f ∗ : Extn(M,N)→ Extn(M, Ñ).

3 Integral Ring extensions
3.1 Basic properties
Before we begin our formal dissertation, there is a few things to be kept in mind:

1. Consider a ring A, with p ∈ Spec(A) a prime ideal. Then the following diagram commutes:

A

A/p Ap

κ(p)

(41)

where κ(p) = Frac(A/p) = Ap/pAp.

2. Now consider a more complicated case. Let B to be a A-algebra. Then Consider the following
diagram:

B ⊗A A

B ⊗A A/p B ⊗A Ap

B ⊗A κ(p)

in simplified
terms is

B

B/pB Bp = S−1B

B ⊗A κ(p)

(42)

where S = A\p. Now induced by the algebra homomorphism f : A → B, we take the diagrams
above as an single object, then there is a homomorphism of commutative diagrams F ∗.

3. Suppose B is a A-algebra. Start with any B, given q ∈ Spec(B), Let p to be f−1(q) ∈ Spec(A).
Then replicate the diagram in (2) above, there is a even large homomorphism F ∗, as shown in the
following:

Ã B̃

f̃−1(q) B̃

F ∗

F ∗ F ∗

F ∗

(43)

where ·̃ denotes the square diagram above as an entity. Then the spectrum of the diagram is:

Spec(B ⊗ A/p = (f ∗)−1(V (p))) Spec(B) Spec(B ⊗ Ap) Spec(Bq)

V (p) = Spec(A/p) Spec(A) Spec(Ap)

⊂

ρ∗ (44)

29



Graduate Algbera II-A script 3.1 Basic properties

Definition 3.1. Let A be a ring. then B ⊇ A be a ring extension, i.e., as an A-algebra which is an
A-algebra which is injective as ring homomorphism. then an element x ∈ B is integral over A if it is a
monic polynomial over A. i.e., there exists a monic polynomial p ∈ A[X] such that p(x) = 0 ∈ B

Remark 3.1. An immediate analog of the above definition is the when A = F to be some field. then
in such case integral ring extension corresponds to the algebra field extension, whereas the finite ring
extension corresponds to the finite field extension. This gives rise to the following definition:
Definition 3.2. We define B to be a finite ring extension of A (finite A-algebra) if B as a A-module
is finitely generated.
Proposition 3.1. The following are equivalent:

1. x ∈ B is integral over A.

2. The subring A[x] ⊆ B generated by A and x is a finite A-module.

Proof. ⇒:We know x is the root of a certain monic polynomial p of degree, say n. then We consider the
submodule of B generated by 1, x, x2, ..., xn−1, say C. then C is finite as an A-module. We see easily that
due to x is a root of a monic polynomial, A[x] = C.
⇐: This is immediate from Cayley-Hamilton Theorem, which is stated below. Using the theorem to

A-module M = A[x] by applying ϕ : M → M ; m 7→ x · m the ‘multiplication by x’. Then we get
p(X) ∈ A[x] is monic such that p(ϕ) = 0, that is, ∀m ∈ M,xn + a1x

n−1 + ....+ an) ·m = 0. Let m = 1B,
we have the desired result.

Now it left to state and show the theorem:
Theorem 3.1 (Cayley-Hamilton Theorem). If M is a finite A-module and ϕ ∈ EndA(M) is an A-
endomorphism. then ∃ monic A-polynomial p(X) such that p(ϕ) = 0 in EndA(M).

Proof. We prove the result more precisely. Suppose M is a finite A-module that can be generated by n
generators. Suppose a is a ideal such that ϕ(M) ⊆ a ·M as submodule of M . Then ∃ai ∈ ai such that
ϕn + a1ϕ

n−1 + · · ·+ an = 0

Proof. Let m1, ....,mn be n generators ofM . Then for each i, ϕ(mi) =
∑n

j=1 aijmj. then inM⊗n, we have:
ϕ 0 . . . 0
0 ϕ . . . 0
... ... . . . ...
0 0 . . . ϕ



m1

m2
...
mn

 =
[
aij

]

m1

m2
...
mn


Let

Ψ := ϕ

1 . . . 0
... . . . ...
0 · · · 1

− [
aij

]
∈Mn×n(EndA(M))

Hence Ψ

m1
...
mn

 =

0...
0

. Taking the adjoint of Ψ, whose ij-entry is (−1)i+j det(Ψwith row i and column j

eliminated). We denote the adjoint of Ψ to be Adj(Ψ) ·Ψ

m1
...
mn

 =

0...
0

. Then det(Ψ) · I

m1
...
mn

 =

 0
...
mn

,
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which implies det(Ψ) · · ·mi = 0 for all i. i.e., det(Ψ) · 1 = 0.But we note Ψ is of the form:
ϕ− a11 −a12 · · · −a1n
−a21 ϕ− a22 · · · −a2n
... ... . . . ...
−an1 an2 · · · ϕ− ann


the determinant of which is of the form ϕn + lower degree terms of ϕ.
Remark 3.2. However, note that EndA(M) as the underlying ring for matrix Ψ is not even commutative,
which means that detΨ is not even well-defined a priori. Nonetheless, to remedy this glitch, we could
confine our attention to E, which is defined to be the subring of EndA(M) generated by A = {all scalar
multiplication endomorphisms}. Consider the natural embedding:

ι : A→ EndA(M)

a 7→ (m 7→ am)

Then E is the set of polynomial expressions in ι(A)[ϕ], i.e., of the form of ϕn + an−1ϕ
n−1 + ...+ an, where

ai ∈ ι(A). Note by the fact ϕ commutes with the image of A, we show that E is a commutative subring
of EndA(M) and the whole argument carries forward.
Remark 3.3. If M is a free A-module with A-basis m1, ...,mn, then det(Ψ) is the characteristic poly-
nomial of ϕ. Upon finishing this proof, we shall digress a bit into the discussion of Nakayama.
Corollary 3.1. Suppose M is a finite A-module, and a ⊆ A an ideal such that aM = M . then ∃x ∈ A
such that x ≡ A mod (a). and x ·M = 0 as submodules of M .

Proof. take ϕ = idM , we get idnM +a1 id
n−1
M +...an = 0 ∈ EndA(M). Set x := 1 + a1 + ... + an ∈ A. then

x · n = 0 for all m ∈M and x ≡ 1 mod (a).
This corollary forms an alternative proof of Nakayma’s lemma, version 2.

Remark 3.4. To discuss the injectivity and surjectivity of a certain map, we amounts up to consider the
zeroness of the map. i.e., the kernel and cokernel of the map being zero.

Proof. By previous corollary, we get x ∈ A such that xM = 0 and x ≡ 1 mod (a). Then prove the claim
that x ∈ A×. Suppose not, then ∃ some maximal ideal m ⊂ A such that x ∈ m. But then x ≡ 0 mod (m).
Yet the hypothesis says that x ≡ 1 mod (a), which implies that x ≡ 1 mod (m) via the following map:

A A/a A/m

x 1 1

Proposition 3.2. Let A ⊆ B be a ring extension. x ∈ B. Then the following are equivalent:

1. x is integral over A, i.e., it being a root of some monic A-polynomial.

2. A[x] ⊂ B is a finite A-module.

3. A[x] is contained in a subring C ⊆ B such that C is a finite A-module.

Proof. (1) ⇐⇒ (2) ⇒ (3) is easy. To see (1) ⇐ (3), Regard C as an A[x]-module. Since C is finite
as an A-module, then apply Cayley-Hamilton to C and an A-linear isomorphism ϕ := (c 7→ x · c), we
yield one monic polynomial such that p(ϕ) = 0 ∈ EndA(C) which expresses in terms of x is the desired
polynomial.

We now want to the extension of finitely many integral elements is a finite A-algebra.
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Corollary 3.2. Let A ⊂ B be a ring extension. Suppose x1, ..., xn ∈ B are finitely many elements, each
of which integral over A. Then A[x1, ..., xn] ⊂ B is a finite A-algebra, i.e., is finitely generated as an
A-module.

Proof. Recall the above proposition (1) ⇒ (2), then A[x1, ..., xn] is a finite as a module of the previous
extension. Say m1, ...,mn are finitely generators of ax1 as a A-module and x1, ..., xr are finitely generators
of A[x1, x2] as A[x1]-module, we left the readers to check that mixj are finite generators of A[x1, x2] as
A-module.
Corollary 3.3. A ⊆ B is a ring extension. Let C be the set of elements x ∈ B that are integral over A.
Then C is a subring of B as an A-algebra.

Proof. One suffices to show C is closed under A-multiplication. Given x, y ∈ C, then A[x, y] ⊆ B is
linearly generated by A, x, y. This is finite as A-module. Then ax + by and xy are integral over A is a
easy consequence of (3)⇒ (1).
Remark 3.5. Knowing the monic polynomials ψ, ϕ which x, y are the roots respectively, we want to find
the monic polynomial which x + y and xy satisfy. For this we consider the companion matrix of the
characteristic polynomial −xn + a1x

n−1 + ....+ an:
0 0 · · · 0 −an
1 0 · · · 0 −an−1

0 1 · · · 0 −an−2
... ... . . . ... ...
0 0 · · · 1 −a1

 (45)

Then consider the tensor product of ψ and ϕ as the elements of EndA(M := A⊕m) and EndA(N := A⊕n)
respectively, then the characteristic polynomial of ψ ⊗ ϕ shall do the trick, which we tensor two function
in the sense of matrix.
Definition 3.3. We define the C in previous corollary as the integral closure of A in B.
Remark 3.6. Even if B is a finite A-algebra, it may at first glance seems that the closure C is a finitely
A-algebra. Nonetheless, this is a non-trivial result.

Given an a A-ring homomorphism: f : A → B, let I = ker f . Note that A/I is a finite A-module,
which is singly generated, then every x + I ∈ A/I satisfies the monic polynomial X − x ∈ A[x]. SO we
can regard A/I as a finite integral A-algebra.
Definition 3.4. B is a finite(resp. integral)A-algebra if B is finite(resp. integral) ring extension over
A/I ∼= Im(A → B). Hence by the above discussion, we can alternatively say B is a finite generated as
A-module (resp. every element of B is a root of some monic A-polynomial).
Definition 3.5. B is a finitely generated A-algebra if there exists finitely many elements b1, ..., , bn ∈ B
such that A[b1, ..., bn] ∼= B. i.e., every element b ∈ B can be written in the form of bi, whereas ∃! map:

A[x1, ..., xn] ↠ B

xi 7→ bi

Corollary 3.4. Given an A-algebra B. Then B is a finite A-algebra ⇐⇒ B is finitely generated as an
A-algebra and B is integral as an A-algebra.

Proof. ⇒: Consider B =
∑n

i=1A · bi as an A-module, then the integrality is implied from previous
proposition (3)⇒ (1). ⇐: If B is finitely generated by y1, ..., ym as an A-algebra, then each yi is integral
over A, which B = Bn ⊇ Bn−1 ⊇ · · · ⊇ A which each Bi is finite over A. Hence B = Bn is fintie over A.
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Proposition 3.3 (transitivity of integral dependence). If A ⊆ B ⊆ C as rings and if B is integral over A
and C is integral over B, then C is integral over A.

Proof. Given x ∈ C. IfX is integral over B, then x satisfies some monic B-polynomial Φ(x) = xn+...+b1 ∈
B[x], then b′ :== A[b1, ...bn] ⊆ B is finitely generated as A-algebra and each of elements are integral over
A. Hence B′ is a finite algebra over A. Also x is intgral over B′, which shows that A[x] ⊆ A[x, b1, ..., bn]
is a finite A-algebra. Hence by previous proposition again, x is integral over A.
Remark 3.7. Sometimes the notion of ‘integral’ is replaced by ‘normal’ in other texts, inheriting the
notion from Galois theory.
Definition 3.6. We define a ring A is integrally closed in B if the integral closure of A in B is A itself.
Remark 3.8. When A is a field, then the integral closure is just the algebraic closure. Hence by the same
virtue of proof, one easily sees the following:
Corollary 3.5. Denote the integral closure of A in B as C again. Then C is always integral closed in B.
i.e., the integral closure of the integral closure is just itself.
Proposition 3.4. A unique factorization domain (UFD) is integrally closed in the fraction field of A.

Proof. We let the fraction field be F. Then pick x ∈ F, we suppose the polynomial it satisfy is xn +
a1x

n−1 + an. We write x = a
b
, where a, b relative prime. Then by clearing the quotient, we yield:

an + a1a
n−1b+ · · ·+ anb

n = 0

Since b ̸= 0, we have b|an. Then any irreducible factor(which are prime in UFD) p of b will divide an,
hence divide a, contradicting with the assumption a and b are coprime. Hence b is not a prime. Hence
b ∈ A× and x = ab−1 ∈ A.
Remark 3.9. Consider now B being the integral closure of A in L, where as L is a finite filed extension
of the fraction field of A, which we denote as K, as illustrated in the following diagram:

B L

A K

⊆

⊆

(46)

The bizarre behavior to be noted here is that even if L/K is a finite field extension, B may not be a finite
A-algebra.
Proposition 3.5 (Naturality of integral extension). A ⊆ B is an integral ring extension. Then we can
have the following extension:

1. If b ⊆ B is a prime ideal, set a = b∩A, we get A/a ⊆ B/b is also an integral ring extension via the
following diagram:

a A A/a

b B B/b

(47)

2. Given an mult-closed subset S ⊆ A ⊆ B, we get S−1A ⊆ S−1B also a integral ring extension.

To prove these two extensions, we prove a more general assertion, which states integrality is stable under
base change.i.e.,
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Lemma 3.1. Let f : B → B′ be a homomorphism of A-algebras, and let C be an A-algebra. If f is
integral, i.e., B′ is an integral extension of f(B), then f ⊗ 1 : B ⊗A C → B′ ⊗A C is integral.

Proof. It suffices to show that b′⊗A c is integral over (f ⊗A 1)(B⊗AC). If b′ ∈ B′ satisfies the polynomial
xn + ...+ an where ai ∈ f(B), then b′ ⊗ c is the root of:

xn + (a0 ⊗ c)xn−1 + ...+ (an ⊗ cn)

over (f ⊗A 1)(B′ ⊗A C).
This includes the first and the second as a special case when we take B = A and S−1B+B⊗AS−1A and

for the second equation, note B⊗A A/a = B/aB, then the proposition comes from the integral extension:

A/a B ⊗A A/a B/b (48)

each of which is integral,(for aB ⊆ b) Hence the composition is integral.
After roaming through the general theories, we shall examine through a few examples.

1. Given Z→ Q→ Q(i) a ring extension, we claim that the integral closure of Z in Q(i) is Z[i]. Note
Q(i) is the fraction field of Z[i].

Proof. We know Z[i] is Euclidean domain via the following Euclidean function a + bi 7→ a2 + b2.
Since UFD are integral closed in their fraction field, we have Z[i] integrally closed in Q(i).

2. Consider now another extension Z → Q → Q(
√
5). First Z[

√
5] ⊃ Z is integral ring extension.

Define α := 1+
√
5

2
∈ Q(5)\Z[5] satisfies α2 − α− 1 = 0. Then we have the following extension:

Z[α] ⊋ Z[
√
5] ⊃ Z (49)

We claim that Z[α] is integrally closed in Q(α) = Q(
√
5), the later of which is the fraction field of

Z[α].

Proof. Consider x = a+ b
√
5 ∈ Q(

√
5). take conjugate x = a− b

√
5, then both x and x are roots of

f(x) := (xa)
2 − 5b2 = x2 − 2ax+ (a2 − 5b2) ∈ Q[x]

Now suppose x is integral over Z, then ∃ monic polynomial g(x) such that g(x) = 0, then g(x) =
g(x) = 0, which shows that x integral over Z.

If x = x, it is easy, for x ∈ Q. On the other hand, if x ̸= x, then x+ x = 2a and xx = a2− 5b2. then
x and x are distinct roots of f , with their sum and product integral over Z. But Z as an UFD is
integrally closed in its fraction field Q, hence we have x+ barx and xx all lies in Z, that is, f ∈ Z[x].
Hence 2a ∈ Z, Also (2a)2 − 5(2b)2 = 4(a2 − 5b2) is an integer, which implies 5 · (2b)2, is a integer.
This forces 2b to be a integer, as 5 is not a square number. Summing up, we see x ∈ Z+Z

√
5

2

3. In general, for n ∈ Z square-free, then the integral closure of Z in Q(
√
n) is:{

Z[
√
n] if n ̸≡ 1 mod (4)

Z[1+
√
n

2
] if n ≡ 1 mod (4)

(50)

This result is more related to number theory, hence the proof is omitted here.
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We now show an important theorem in integral extension, which is an developed version of the ‘going-up’
theorem which was presented previously. We begin with a proposition.
Proposition 3.6. Suppose B ⊃ A is a integral ring extension with both A,B integral domains. then B
is a field ⇐⇒ A is a field.

Proof. Suppose first if A is a field. Given y ∈ B such that y ̸= 0, then y is integral over A implies that
yn+ ...an = 0. Since B is a domain with y ̸= 0, with possible cancelling factors yi, we may assume without
loss of generality that an ̸= 0. Then:

a−1
n (yn−1 + a1y

y−2 + ...+ an−1) ∈ B

is the inverse of B. Hence B is a field.
Conversely, we may assume B is a field. Let x ∈ A and x ̸= 0. We see that x is invertible in B with

x−1 ∈ B is integral over A, so:
(x−1)m + ...am = 0 ∈ B

for some ai ∈ A. Hence x−1 = p(x) whereas the coefficients of polynomial p are in A. Hence x−1 ∈ B by
closure.
Corollary 3.6. B ⊃ A is a integral ring extension. Given q ∈ B prime, we have p : q ∩ A is prime in A.
Then q is a maximal in B ⇐⇒ p is maximal ideal in A. i.e., there is a pullback of maximal ideal as in
the diagram:

B A

q q

⊇
⊆

⊇

(51)

Remark 3.10. In general the maximal ideals does not pull back to be maximal ideal. Nonetheless, in the
case of integral ring extension this is true.

Proof. Recall the diagram in naturality of integral extension with respect to localization:

p A A/p

q B B/q

(52)

by naturality A/p ↪→ B/q is an integral ring extension. Hence q is a maximal⇐⇒ B/q is a field⇐⇒ A/p
is a field⇐⇒ p is maximal in A.
Corollary 3.7. Suppose B ⊃ A an integral ring extension. Suppose q1 ⊃ q2 ⊃ B a chain of prime ideals,
in which they coincide when intersecting with A, i.e., q1 ∩A = q2 ∩A := p. Then q1 = q2. Hence, a chain
of prime ideals in B cannot be merged in A.

Proof. We consider the localization at p with S := A\p. Then q1Bp ∩ q2Bp = pAp. Since S−1A is a local
ring, whereas pAp is a maximal ideal, hence by precious corollary, we have q1Bp and q2Bp are maximal
ideal and therefore by inclusion are the same. Hence q2 = q1.
Proposition 3.7. Suppose B ⊃ A is integral ring extension. and p ⊂ A a prime ideal. Then ∃ a prime
ideal q ⊂ B such that q ∩ A = p.
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Proof. Again we localize the ring at S = A\p. Then the universal property gives:

B Bp S−1B = B ⊗A Ap

A Ap S−1A

=

=

(53)

Note the injectivity is carried forward because Ap is flat. Since Bp ̸= 0, we can choose a maximal ideal m
of Bp, then by previous corollary, m ∩ Ap is maximal in Ap, which forces it to be pAp. We let q to be the
preimage of m in B, which is prime in B. Then q is what we desired.

3.2 Cohen-Seiderberg theorems
We have now lay the ground for the Cohen-Seiderberg first theorem/‘Going-up theorem’. Suppose
B ⊃ A a integral ring extension. Given a chain of prime ideals p1 ⊊ p2 ⊆ A, whereas for p1, there
corresponds a q1 ∈ B such that q1 ∩ A = p1, as the previous proposition guaranteed.
Theorem 3.2 (‘Going-up theorem’). There exists a q2 ⊂ B such that p2 = q2 ∩ A.

Proof. Reduce A,B by modulo p1 and q1 respectively. Hence we have the following diagram:

B := B/q1 A/p1 := A

q2 p2 = p2/p1

0 0

f

⊂ ⊂

(54)

f is injective since p1 = q1 ∩ A. Moreover, f factors through A/p1 → B/p1 ↠ B/q1, whereas tensor
product preserves integrality. Hence f is integral map. Hence we have transformed the map A ⊂ B to
a integral extension A/p1 ⊂ B/q1, to which we apply the above the proposition above and hence there
exists a q2 in B such that q2 ∩ A = p2. Then let q2 to be the preimage of q in B ↠ B, then q2 ∩ A is the
preimage of p2 in A↠ A = p2.

We now present Cohen-Seiderberg second theorem/‘Going-down theorem’. This time the
condition is stronger.
Theorem 3.3 (‘Going-down theorem’). Suppose B ⊃ A is a integral extension with A,B are integral
domains and A is integrally closed in fraction field of A. Given the diagram:

B A

q2 p2 = q2 ∩ A

q1 p1

⊂

(55)

Then there exists a prime ideal q1 ⊆ B such that p1 = q1 ∩ A.
We prepare some propositions for this theorem:

Proposition 3.8 (Prime avoidance). Let A be any ring, p1, ...pn ⊆ A prime ideals and q ⊆ A any ideal
such that q ⊆ ∪ni=1pi, then ∃i ∈ {1, ..., n} such that q ⊆ pi.
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Proof. We want to prove that if ∃q such that ∀i, q /∈ pi, then q ⊆ ∪ni=1pi. We prove this by induction.
The base case is obvious. Now assume it is true for n− 1 many primes, then ∀i ∈ {1, ..., n}, the induction
hypothesis show that q ̸⊂ ∪j ̸=ipj. This shows ∃xi ∈ q\ ∪j ̸=i pj. If there is a i such that xi /∈ pi, then
xi ∈ q\ ∪nj=1 pj, then we are done. If otherwise, then ∀i, then xi ∈ (q ∩ pi)\ ∪j ̸=i pj. Now consider:

y :=
n∑
i=1

x1 · · · x̂i · · ·xn

where ·̂ means omitted. Since y ∈ q, and each term except the i-th term lies in pi and the i-th term is not
in pi. Hence the sum is not in pi. Hence y /∈ ∪ni=1pi, which show the avoidance.

We also need the following lemma:
Lemma 3.2 (Transitivity of Galois action on primes). Let A be a domain integrally closed in fraction
field of A, which we denote as K. Let L/K be an algebraic and normal extension. let B be the integral
closure of A in L. Let G := Aut(L/K), then for any prime p ⊆ A, G acts transitively on the set S := {q
prime in B : q ∩ A = p}.
Remark 3.11. In general we do not assume the field extension is separable, for otherwise the group G is
already a Galois group. Geometrically the picture is clearer, as illustrated in the following diagram:

f−1(Spec(κ(p))) Spec(B) Spec(L)

Spec(κ(p)) Spec(A) Spec(K)

f ⟲G (56)

Note Spec(κ(p)) is in fact a singleton {p}, whereas the set S on which G acts transitively is the preimage
of {p} in f−1(Spec(κ(p))). Hence the G-action at the right-hand side is carried over the left-hand side.

Proof. We first consider the case G is finite. Choose one prime q over p, i.e., q ∈ S. Then we have finite
set of primes {g · q : g ∈ G} of B over p. (since q ∩ A = p ⇒ gq ∩ gA = gp. Now since G fixes K hence
A and p, we have gq ∩ A = p. Moreover, since B is integral closure of A and G fixes A and consequently
A[x], we have gq = gB = B.)

Now it suffices to show for any q′ ∈ {prime ideals over p}, one has q′ ∈ {g · q : g ∈ G}, i.e., q′ is in the
orbit. We hence want to show that ∃g ∈ G, such that q′ ⊆ g · q. Note the inclusion is sufficient because
both of them collapse to p when intersecting with A. By previous proposition that the chain of primes
does not merge. Now by prime avoidance, it suffices to show that

q′ ⊆
∪
g∈G

g · q

To prove the last assertion, pick x′ ∈ q′, then let y′ :=
∏

g∈G g · x′ ∈ L. Also note this is fixed by G, so
y′ is purely inseparable over K. Hence ∃pℓ such that (y′)p

ℓ ∈ K ∩ B = A by the assumption that A is
integrally closed. Hence (y′)p

ℓ ∈ A ∩ q′ = p ⊆ q. Hence ∃g ∈ G such that g · (x′)pℓ ∈ q. Hence g · x′ ∈ q.
Summing up, we prove the lemma for finite case.

In the case when G is infinite, then G is a profinite group, i.e., it can be defined as the direct limit
of finite groups or defined to be a topological group which is compact, Hausdorff and totally disconnected.
(It can be thought as ‘looking like Cantor set’). Then:

f : G ↪→
∏

L0/K⊆L/K
finite normal extension

Aut(L0/K)
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The image f consists of all the infinite tuples which are compatible. Consider the following diagram:

... L

σ1 L1

σ2 L0

K

where σi ∈ Aut(Li/K) (57)

where each Li/K is the field extension with finite Aut(Li/K). To show the transitivity of action, first
given q, q′ prime ideals in B lying over p. Then we define

G(L0) := {g ∈ G : g · (q ∩ L0) = q′ ∪ L0}

That is, it translates the pullback q to the pullback of q′ at L0. Note G(L0) is a compact set of G, which
is nonempty by above result for finite Aut(L0/K). Then we extend this group action from L0 to L. From
what we know in Galois theory, when L0 ↑ L, then G(L0) ↓ G, which show ∩L0/KG(L0) ∈ G and is
nonempty. this gives the element in infinite case.

With all these preliminaries, we now prove the ‘Going-down’ theorem.

Proof. Let K and L be the fraction field of A and B respectively. We first claim that L/K is an algebraic
field extension. The numerator clearly fulfills the condition, so we only concern about the denomina-
tor.Given 1/b ∈ L with b ∈ B\{0}. By integrality of B, write bn + a1b

n−1 + ...+ an = 0 for ai ∈ A.Hence
1 + a1/b + ... + an/(b

n) = 0 ∈ L, hence 1/b is algebraic. hence we prove the algebraic part. To use the
transitivity of G-action, we further need the extension to be normal. Hence we choose a normal closure
M/K of L/K. We let C to be the integral closure of A in M . Choose any prime B2 of X lying over q2 of
B. Summing up in the following diagram:

B′
1 B′

2 B2

q1 q2

p1 p2

⊂

g·

⊆
C M

B L

A K

integral
closure

⊂
integral closed

algebraic, normal⊂

⊂

(58)

Choose any prime ideal B′
1 ⊆ C lying over p1 ⊆ A. Use ‘Going-up’ theorem, we get p′2 ⊆ C. Note

now B1,B
′
2 both lies over p2. By the transitivity of Galois action, we get g ∈ Aut(M/K) such that

g ·B′
2 = B2 ∈ C. Now set B1 := g ·B′

1 and q1 := B1 ∩B. Then q1 ⊆ q2 is the q1 we are looking for.

3.3 ‘Autour du Nullstellensatz’
We now introduce the famous theorem Hilbertscher Nullstellensatz, which can be seen as the pinnacle
of classical algebraic geometry. Before presenting the theorem, we first introduce some background for the
entertainment of the readers.

Hilbert first proved the theorem with the help of Noether Normalization lemma. Later Zariski proved
a result named Zariski’s lemma independently, which is equivalent to Nullstellensatz. later, Chevalley
proved another Chevalley’s lemma which implies Zariski’s lemma. Also Nullstellensatz(NS) has three
forms, namely the Hilbert’s NS, the weak NS and the strong NS, each of which is equivalent to each other.
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We shall today present them in an anti-chronical order via showing Chevalley’s result first, which implies
the other two.

Recall if we given an algebraically closed field k and an field homomorphism φ : K ↪→ k. Then given
any algebraic extension L/K, there induces a φ′ : L ↪→ K. As a natural generalisation of field extension,
we consider B ⊇ A integral ring extension.
Proposition 3.9. For all algebraic closed field k and for all ring homomorphism φ : A→ k, there exists
a ring homomorphism φ′ : B → k extending ring φ.

B

A k

∃φ′
int

φ

(59)

Proof. We define p := kerφ, which is a prime ideal in A. Then we localize A at p. Then φ : A → k
extends to φ : Ap → k, which we use φ to denote as well. Now B is integral over A. Hence we can also
have integral extension S−1B ⊃ S−1A where S = A\p. This shows ∃ prime ideal q such that q∩S−1A = p.
(Note here we abuse the notation a bit to use p to denote the unique maximal ideal p ·Ap in the local ring
Ap.) Hence again by the correspondence of maximal ideal in integral extension, q is a maximal ideal in
S−1B. Passing to quotient:

B S−1B S−1B/p · S−1B S−1B/q k

A S−1A S−1A/p

Ap κ(p) = φ(S−1A) ∈ k

int

∃φ′

φ

int

φ

φ

alg
int

= =

(60)

Note since p and q are maximal ideal in S−1A and S−1B respectively, and the map S−1A ↪→ S−1/p·S−1B ↠
S−1B/q is integral, hence there is a algebraic field extension S−1A/p ↪→ S−1B/q. Moreover, there is a field
extension from S−1/p ↪→ k inducing from the blue arrows, ie.e, φ : A → k. Hence we now only consider
the red part of the graph, which all of the components are fields. Hence we can apply the above property
in field extension to such, whence comes the existence of φ′ extending φ. Hence we compose the top maps
to yield B → k, which is what we want.

We now present Chevalley’s lemma. As an alternative, the readers can consult Atyiah Macdonald at
prop. 5.23 and exe. 5.20.
Theorem 3.4 (Chevalley’s lemma). Let A ⊆ B be integral domains. Assume B is finitely generated as
A-algebra. Then ∃a ∈ A\{0} with the following property:

For all algebraic closed field k and ring homomorphism φ : A→ k such that φ(a) ̸= 0 ∈ k, there exists
a ring homomorphism φ′ : B → k extending φ, i.e., φ′|A = φ.
Remark 3.12. Note this B is finitely generated as an algebra, hence the ring extension need not be
finite and hence may not be integral. This scenario is much larger than any of the previous cases we
consider. Chevalley’s lemma is important in algebraic geometry to show the constructibility of finite-type
morphisms of schemes.

Proof. Under the same hypothesis we shall prove a ‘stronger’ result, namely:
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(⋆) ∀b ∈ B\{0}, ∃a ∈ A\{0} with the following property: for any algebraic closed field k and any ring
homomorphism φ : A → k, such that φ(a) ̸= 0 in k, there exists a ring homomorphism φ′ : B → k
extending φ such that φ′(b) ̸= 0 ∈ k.

Apply (⋆) to b = 1B, we have Chevalley’s lemma. Conversely, Chevalley’s lemma also implies (⋆). Apply
the lemma to B[b−1], which B[b−1] ⊃ A is finitely generated A-algebra, hence assuming the theorem, we
have φ′B[b−1] → k mapping b−1 to some nontrivial elements, for otherwise, φ′(bb′) = 0 contradicting the
result. Then we have the result.

We prove (⋆) by induction on the number of generators of B as an A-algebra. Write B = A[x1, ..., xn],
we do induction on n. Let A′ := A[x1, ..., xn−1], hence B = A′[xn]. Now we want to show (⋆) for B ⊇ A′,
i.e., ∀b ∈ B\{0}, ∃a′ ∈ A′\{0} such that every φ′ : A→ k that not kills a′ can be extended to φ′′ : B → k
such that φ′′(b) ̸= 0. If this induction step is done, then the induction hypothesis allows us to extend a
map φ to φ′ : A′ → k and then to φ′′ : B → k, whence the lemma is proven.

Hence we only consider the case n = 1. Renew the notation as B = A[x] be singly generated. Then
there is an A-algebra homomorphism:

q : A[x] ↠ B

X 7→ x

If q is injective, then it is a isomorphism: A[X] ∼= B. there given b ̸= 0 ∈ B, it corresponds to a non-zero
polynomial f . Let a to be the leading coefficient of f . Then for all φ : A → k such that φ(a) ̸= 0, then
φ : A[X]→ k[X] a ring homomorphism. We can choose λ ∈ k such that φ(f) is not zero. at x = λ. Then
we define φ′ as the composition of maps, which is what we desired:

φ :
B A[X] k[X] k

b f ̸= 0 φ(f) ̸= 0 φ(f)|λ

q

φ evλ

Now we consider the case q is not injective, then ker(q) is non-zero. Hence ∃a0, ..., ar ∈ A such that

a0x
r + a1x

n−1 + ...ar = 0 ∈ B

with a0 ̸= 0. Localize at a−1
0 . See that B[a−1

0 ] = A[a−1
0 ][x]. This allows the polynomial to be monic,

whereas B[a−1
0 ] is a finite A[a−1

0 ]-module. So b is integral over A[a−1
0 ]. That is there is a polynomial

a′0 + a′1b+ ...a′sb
s = 0 ∈ B = A[x]

for some coefficients a′i ∈ A. Since B ̸= 0, via dividing suitable bi, we may assume that a′0 is nonzero. Set
a := a0 · a′0 ∈ A\{0}. Suppose φ : A→ k and φ(a) ̸= 0, then φ extends to a unique φ : A[a−1]→ k. Now
consider the polynomial with coefficient ai. Since a0 is invertible in B[a−1], we have B[a−1] is integral over
A[a−1]. Hence the previous proposition allows us to extend the φ : A[a−1]→ k further to φ′ : B[a−1]→ k:

B[a−1]

B A[a−1] k

A

φ

φ

(61)

It remains to check φ′(b) ̸= 0. Suppose not, then φ′ applies to the polynomial with coefficients a′i implying
φ(a′0) = 0. Hence φ′(a) = 0, hence a contradiction.
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We now put aside Chevalley’s lemma for a while and consider Zariski’s lemma.
Theorem 3.5 (Zariski’s Lemma). Let K be a field, and B be a finitely generated K-algebra. If B is also
a field, then B is a finite extension of K, therefore algebraic.
Example 3.1. We assume K = Fq is a finite field. Let B = K[x1, ..., xn]/(f1, ..., fm) a finitely generated
K-algebra. Choose m ⊆ B a maximal ideal, then K ↪→ B/m is a finite field by Zariski’s lemma.
Remark 3.13. More generally, Zariski’s lemma shows the residue field of a closed point of a variety over
K is a field extension.

Knowing Chevalley’s lemma, it is almost trivial to prove Zariski’s lemma. Since B is a finitely generated
K-algebra, take k to be the algebraic closure of K, we see ϕ : K ↪→ k can be extended to ϕ′ : B → k,
whereas the field homomorphism is always injective, hence B is also algebraic over K and being finitely
generated A-algebra, B is indeed a finite field extension.

We shall list the elementary proof of Zariski’s lemma below, which, as the readers shall see, is drafted
in a similar fashion.

proof of Zariski’s lemma. Let x1, ..., xn be the finite list of generators of B as aK-algebra. We do induction
on n:

The base case when n = 1, we have B = K[x1] is a field. If x1 is not algebraic over K, then B is the
polynomial ring K[x] which is not a field. Hence x is algebraic over K whence B is a finite extension.

Now assume n > 1. Let A = K[x1] ⊆ B = A[x2, ..., xn]. Hence A is domain, whence we consider
the fraction field of K(x1). the universal property of fraction field gives a field homomorphism form
K(x1) → B, which is clearly injective. We see B is now finitely generated as an K(x1)-algebra by n − 1
generators, whence by induction hypothesis we have B/(K(x1)) finite extension. Now it remains to show
K is finite algebraic extension of K. Note each of x2, ..., xn satisfy some K(X1)-polynomial, which by
clearly denominators, they can be A-polynomials (not necessarily monic.) By multiplying all the leading
coefficient of these polynomial, we have the element f , which by adjoining its inverse to A, we have:
∃f ∈ A\{0}, such that x2, ..., xn is integral over A[f−1] (for every polynomial becomes monic.) Hence now
K(X1) is integral over A[f−1].

If x1 is algebraic over K, then A = K[x1] is a polynomial ring, which is a principal ideal domain.
Hence A is integrally closed in the fraction field of K, which is K(x1). Hence A[f−1] is also integrally
closed in K(x1). But K is integral over A[f−1], hence K = A[f−1]. Note this is absurd, for K(x1) is the
fraction field of A, which is isomorphic to the ration function field over K, hence is not finitely generated
as a K-algebra, while A[f−1] is finitely generated as a K-algebra by x1, f−1, hence a contradiction.
Hence x1 is algebraic over K and A is finite extension of K.

Now we shall move to the core of this discussion: Hilbert’s Nullstellensatz.
Theorem 3.6 (Hilbert’s Nullstellensatz(NS)). Let k be an algebraically closed field. Let M ⊆ k[x1, ..., xn]
be a maximal ideal. Then ∃x1, ..., xn ∈ k, such that M = (X1 − x1, ..., Xn − xn), each of the generators
being a degree 1 monic polynomial.
Remark 3.14. Note the uniqueness of x1, ..., xn ∈ k is easy to deduce using the argument of maximal
ideal. We only need to focus on the existence of these elements. Assume the theorem being granted, The
significance of Hilbert’s NS is that it gives, when k is algebraically closed, a canonical bijection:

{all maximal ideals of k[x1, ..., xn]}
∼=←→ kn = {all n-tuples (x1, ..., xn) over k}

(X1, ..., Xn − xn)←− (x1, ..., xn)

gives the form of all maximal ideals. Also keep in mind that the set of all maximal ideals is the subset
of Spec(k[x1, .., xn]), which constitute the fundamentals of classical algebraic geometry. Note as men-
tioned before, Zariski’s lemma is equivalent to Hilbert’s NS. Before the arguments, we first justify the
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statement that (X1 − x1, ..., Xn − xn) is indeed maximal in k[X1, ..., Xn]. Consider the kernel of k-algebra
homomorphism:

k[X1, ..., Xn]
ev↠ k

Xj 7→ xj

Xj−xj clearly lives in the kernel. To see (X1−x1, ..., Xn−xn) ⊇ ker(ev), we notice k[X−1, ..., Xn]/(X1−
x1, ..., Xn − xn) os seen to be just k itself. Hence equality holds.

We now see first the equivalence between Zariski’s lemma and Hilbert’s NS.

Zariski⇒Hilbert. Take M ∈ K[X1, ..., Xn] a maximal ideal. Then k[X1, ..., Xn]/M is finitely generated
k-algebra and is a field. So Zariski’s lemma implies that it is a finite extension of k. But k is algebraically
closed, hence we have a k-algebra homomorphism:

k[X1, ..., Xn] ↠ k[X1, ..., Xn]/M = k

Xj 7→ xj := image of Xj ∈ k

Hence we yield x1, ..., xn ∈ k and it left to check M is generated by Xi− xi. But we see from the quotient
homomorphism we see (X1 − x1, ..., Xn − xn) is maximal, whence two are equal.

Note Hilbert’s NS has a inconvenient assumption that the underlying field being algebraically closed,
while Zariski’s lemma has a more general assumption upon underlying field. Hence it will be somewhat
surprising to deduce such.

Hilbert⇒Zariski. Let B be a finitely generated k-algebra (k not necessarily algebraically closed.) Suppose
B ̸= 0. Now write B = k[X1, ..., Xn]/I for some proper ideal I. Now let k be the an algebraically closed
field containing k, we have the commutative diagram:

I ⊗k k k[X1, ..., Xn] B ⊗k k

I k[X1, ..., Xn] B

(62)

Note two arrows at the side are inclusions, because ever k-module over k is flat over k. Recall that k ↪→ k
gives a sequence:

Tor1(B, k/k)→ B → B ⊗k k
which is exact. Knowing every vector spaces over k is flat over k, we see the Tor-module is 0, whence
B ↪→ B ⊗k k is injective. The other side is by the same reason injective.

Hence B⊗k k is non-zero, and I⊗k k is a proper ideal of k[X1, ..., Xn]. Hence we can choose a maximal
ideal M containing I ⊗ k. Now by Hilbert’s NS, we see M is generated by Xi − xi.

Now we have the k-algebra homomorphism ϕ : k[X1, ..., Xn]→ k sending Xj to xj. Then m is the kernel
of ϕ.(Note at the k-level the kernel is M. m and M are different object.) Then Im(ϕ) is the k-subalgebra
of k generated by x1, ..., xn. Note xi are algebraic over k, so Im(ϕ) is a finite extension of k. Hence it is
a field.(For every element x−1

i is the root of some polynomial over K and pull it back to the polynomial
ring to see that Im(K[Xi]) is indeed a field.) This implies that m is a maximal ideal of k[X1, ..., Xn].

We now claim I ⊆ m. We see both I ⊗k k and m ⊗k k are ideals of k[X1, ..., Xn], both contained in
M. Hence (m + I) ⊗k k ⊆ M is a proper ideal. Now m + I is a proper ideal of k[X1, ..., Xn]. Now m is
maximal, we see I ⊆ m. Hence B = k[X1, ..., Xn]/I contains m/I as a maximal ideal.

Now recall in the scenario of Zariski’s lemma, we assume B is a field, whence m/I is the zero ideal.
Hence m = I. So:

Im(ϕ) = k[X1, ..., X − n]/m = k[X1, ..., Xn] = B
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Now B is finite extension of k in k.
To end the whole discussion, we shall introduce the readers with three common version of Hilbert’s

NS, namely, Hilbert’s NS, Weak NS and Strong NS. We have previously introduced the first version.
Theorem 3.7 (Weak Nullstellensatz). k is an algebraically closed field. For any ideal I ⊆ k[X1, ..., Xn],
we set ν(I) := {x ∈ kn : f(x) = 0 ∀f ∈ I}, which is a Zariski-closed subset of kn defined by I. If I is a
proper ideal, then ν(I) is non-zero.
Theorem 3.8 (Strong Nullstellensatz). k is an algebraically closed field. Let I ⊆ k[X1, ..., Xn] be an
ideal and set V := ν(I) as in weak NS. Let I(V ) := {f ∈ k[X1, ..., Xn] : f(x) = 0 ∀x ∈ V } an ideal of
polynomial functions vanishing on V . Then I(V ) is rad(I), the radical ideal of I.

The three statements, which we abbreviate as ‘Hilbert’, ‘Weak’ and ‘Strong’ respectively are in fact
equivalent. We will assign the rest of the session to discussing this. Note it is easy to see ‘Strong’ implies
‘Weak’.

Hilbert ⇒ Weak. We start with an proper ideal I ⊊ K[X1, ..., Xn]. Choose M containing I. Now with
Hilbert’s NS, M = (X1 − x1, ..., xn − xn) for some x = (x1, ..., xn) ∈ kn. Now every f ∈ I is of the form

f(X1, ..., Xn) = f1(X1, ..., Xn)(X1 − x1) + ...fn(X1, ..., Xn)(Xn − xn) fi ∈ k[X1, ..., Xn

clearly f(x) = 0 for x = (x1, ..., xn). Hence x ∈ ν(I) by definition.

Weak ⇒ Strong. given I ⊆ k[X1, ..., Xn] an ideal, and set V := ν(I) = {x ∈ kn : f(x) = 0 ∈ k ∀f ∈ I}.
Now I(V ) := {f ∈ k[X1, ..., Xn] : f(x) = 0 ∈ K ∀x ∈ V }. Clearly I ⊆ I(V ), in fact rad(I) ⊆ I(V ), for
if f ∈ rad(I), then fn ∈ I for some n, then fn vanishes on V , whence f ∈ I(V ).
The strong NS says rad(I) = I(V ). To see the other side, we use a trick to an arbitrary f ∈ I(V ) by
borrowing an extra element Y . Consider J ⊆ k[X1, ..., Xn, Y ] to be the ideal generated by I and 1− f ·Y .

We now examine ν(J) ⊆ kn+1. Note any (x, y) = (x1, ..., xn, y) ∈ ν(J) which gives 1 − f(x)y = 0,
we see x ∈ ν(I), which gives f(x) = 0. Hence we see ν(J) = ∅. Now apply the weak NS, we see J =
k[X1, ..., Xn, Y ]. Hence 1 = g(1− f · Y ) +

∑r
i=1 hifi some g, hi ∈ k[X1, ..., Xn, Y ], while fi ∈ k[X1, ..., Xn].

Now reduce the polynomial ring by modulo 1− f · Y via the homomorphism:

k[X1, ..., Xn, Y ] ↠ k[X1, ..., Xn][f
−1]

Xi 7→ Xi

Y 7→ f−1

We get 1 = 0 +
∑r

i=1
h′i
fdi
fi ∈ k[x1, ..., Xn][f

−1] for some hi ∈ k[X1, ..., Xn] for di ∈ Z≥0. By clearing
the denominators, we see that fm lies in the ideal of k[X1, ..., Xn] generated by f1, ..., fr ∈ I. Hence
f ∈ rad(I).

Strong ⇒ Hilbert. Given M ⊆ k[X1, ..., Xn] a maximal ideal. Now V := ν(M) with I(V ) as previously.
Then the strong NS gives I(V ) = rad(M) = M for M is a maximal ideal. Hence I(V ) is the whole ring,
whence V ̸= ∅ from the definition. Pick x = (x1, ..., xn) ∈ V , then (X1−x1, ..., Xn−xn) is an maximal ideal
in k[X1, ..., Xn]. Now the maximal ideal is the de facto evaluation homomorphism: evx : k[X1, ..., Xn]→ k.
Since x ∈ V = ν(M), we have M ⊆ (X1 − x1, ..., Xn − xn).

Now to warp up the whole dissertation, we prove the Noether normalization lemma, which is used to
prove Zariski’e lemma and hence Hilbert’s NS.
Theorem 3.9 (Noether’s normalization lemma). Let A be finitely generated algebra over field K. Then
∃y1, ..., yr ∈ A which are algebraically independent over K such that A ⊃ k[y1, ...yr] is a finite ring
extension.
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Proof. Consider the following exact sequence:

ker(q) K[Xq, ..., Xr] A = K[x1, ..., xn]

Xi xi

(63)

The theorem is trivially true if ker(q) = 0. Suppose now ker(q) ̸= 0. Then ∃f ̸= 0 ∈ ker(q). Let d be
the degree of f . Write f in the form of

∑d
i=1 fi, where fi ∈ K[X1, ..., Xn] is the homogeneous polynomial

of degree i. Assume K is infinite. Then ∃λ1, ..., λn−1 ∈ K such that fd(λ1, ..., λn−1, 1) ̸= 0. (This works
because K sis a infinite field.) Set yi; = xi−λixn ∈ A for i = 1, ..., n−1. A′ = K[y1, ..., yn−1] ⊆ A = A′[xn]
as a subalgebra, where 0 = f(xq, ..., xn−1, xn) = f(y1,+λ1xn; ..., yn−1 + λn−1xn, xn) which we rewrite as [

xdn · fd(λ1, ..., λn−1, 1) + xd−1
n · g1 + ...+ x0n · gd

where g1, ..., gd ∈ A′ = K[y1, ..., yn−1] shows that xn satisfy monic polynomial coefficient in A′. This shows
that xn satisfy monic polynomial coefficients in A′, whence xn is integral over A′. From A = A′[xn] we see

A ⊃ A′ = K[y1, ..., yn−1] ⊇ K[z1, ..., zr]

a integral extension and A′ is a K-algebra generated by n − 1 elements. By induction, we set A′ ⊃
K[z1, ..., zr] where z1, ..., zr is algebraically independent over K, which is a integral extension.
Remark 3.15. When k is a finite field which is hence of characteristic p, extra argument would be needed,
which is omitted here.

4 Dimension Theory
4.1 Artinian and Noetherian Rings
Definition 4.1. An A-module M is Noetherian(resp. Aritinian) if every increasing(resp. decreasing)
sequence of submodules eventually stabilize.
Remark 4.1. In the light of Zorn’s lemma, this is equivalent to every non-empty collection submodules
has a maximal(resp. minimal) element.
Example 4.1 (Examples of Noetherian/Artinian rings).

• Consider Z as a Z-module, which is Noetherian but not Artinian, with the sequence 2Z ⊃ 4Z ⊃ · · · .

• Take finite abelian group as Z-module, which is certainly both Noetherian and Artinian, being finite.

• Consider Z[1/p]/Z ⊂ Q/Z is a Z-module, which is Artinian but not Noetherian, with the sequence
1
p
Z/Z ⊊ 1

p2
Z/Z ⊆ · · · .

• The polynomial ring of infinite variables K[x1, x2, ...] is neither Noetherian nor Artinian, with the
sequences (x1) ⊊ (x1, x2) ⊊ · · · and (x1, x2, ...) ⊋ (x2, x3, ...) where (S) is the submodule generated
by the set S.

Definition 4.2. A ring A is a Noetherian(resp. Artinian) if A as an A-module is Noetherian(resp.
Artinian).
Proposition 4.1. M is noetherian A-module ⇐⇒ every A-submodule in M is finitely generated as
A-module.
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Remark 4.2. Note this gives noetherian modules and noetherian rings, which are commonly seen in
pratical cases, a strong condition of sub-finiteness.

Proof. For the⇒ condition, let N ⊆M be any submodule, We want to show that N is finitely generated.
Consider the collection of all finitely generated submodules of N . Since M is noetherian, ∃N0 ⊆ N which
is maximal among all finitely generated submodules of N . We claim that N0 = N . If not, then pick
x ∈ N\N0, then N0 + A · x as a module contradicting the maximality of N0.

As for the ⇐ direction, if M1 ⊆ M2 ⊆ · · · an increasing sequence, where each Mi finitely generated
via assumption. then let M ′ the limit of this sequence, which is also a finitely generated submodule by,
say x1, ..., xr, then ∃M − n such that x1, ..., xr ∈Mn. Then Mn is the submodule that stabilizes.
Proposition 4.2. Noetherian and Aritinian carries over exact sequence. i.e, if 0→M ′ →M →M ′′ → 0
is exact sequence of A-module. Then M is noetherian(resp. artinian) ⇐⇒ both M ′ and M ′′ are
noetherian(resp. artinian).
Corollary 4.1. If M1, ...,Mn are all noetherian (resp. artinian) rings, then so is ⊕ni=1Mi.
Corollary 4.2. If A is noetherian(resp. artinian ring), then any finitely generated A-moduleM is noethe-
rian(resp. artianian) as A-module via ⊕ni=1A · ei = A⊕n ↠M

Corollary 4.3. IfA is noetherian(resp. artinian) ring, then any quotient ringA/a is also a noetherian(resp.
artianian) ring.

Proof. Consider A/a as an A/a-module, which is also an A-module generated by 1 mod (a). Hence the
property of being noetherian(resp. artinian) is stable under passing to the quotient ring.
Remark 4.3. Given the property of being noetheria(resp. artinian), we see this is dealing with the
finiteness property, hence the property shall be preserved under most finite number of action such as
quotient. Nonetheless, it is not preserved (for sure) if we pass some infinite polynomial ring to a field of
fraction.
Theorem 4.1 (Hilbert’s basis theorem). If A is noetherian ring, then A[x] as polynomial over A is also
noetherian ring.

We first state a quick corollary before proving the theorem.
Corollary 4.4. A[x1, ..., xn] is also noetherian if A is noetherian. Consequently any finitely generated
A-algebra over A, which can considered as a quotient of A[x1, ..., xr], is also noetherian ring.

Proof of Hilbert’s basis theorem. The key idea is to divide the algebra in A[x] while keeping track of the
leading coefficients in A. We know A is noetherian, then given an ideal I ⊆ A[x], we want to show I is
finitely generated. We may assume I ̸= 0. Then consider the initial ideal of I, that is an ideal of A
generated by the leading coefficients of all non-zeros f ∈ I, which we denote as a.

Now since A is noetherian, then a is finitely generated as an ideal. Let a be generated by a1, ..., an.
Then let ai ∈ A be the leading coefficients of fi respectively, each of which has degree di. By multiplying
each fi by a suitable power of Xk, we may assume all fi are of degree d. Now given f ∈ I and f ̸= 0 with
degree m. If m ≥ d, then the leading coefficient of f , say a ∈ a, can be expressed in the form

∑n
i=1 λiai,

whereas;
λxm−df1 + ...λxm−dfn = a · xm + lower degree terms

hence f − (λxm−df1+ ...λx
m−dfn) has degree of less than m. Now we repeat this process to yield g1, ...gn ∈

A[x] such that f−(
∑m

i=1 gifi) has degree less than d. ConsiderM to be the submodule A+A ·x+ ...A ·xd−1

, then via chosen I to be the submodule (f1, ...fn) + (I ∩M), we see M is finitely generated as A-module,
which is noetherian. Hence I is finitely generated as A-module, say by ri. Hence I = (f1, ...fn, r1, ..., ri) is
finitely generated.
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Fact: A ring is artinian ⇐⇒ it is noetherian and is of dimension 0.

4.2 Krull dimension
We shall thenceforth digress from Atiyah’s book to dicuss some texts of dimension theory, more specifically,
the dimension theory of Noetherian local rings. Before the formal discussion of Krull dimension, we shall
first entertain the reader with an example.

Now we start the discussion of Krull dimension.
Definition 4.3. The Krull dimension of a ring A is the supremum of the length of prime ideals in A.
i.e., given p0 ⊊ p1 ⊊ · · · ⊊ pr−1 ⊊ pr the chain of ideals of A without further refinements, we define the
Krull dimension of A to be r.
Example 4.2. Let A = K[x1, ..., xn] a polynomial ring in n variables over a field K. Then the chain:

0 ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, ..., xn)

Hence we conclude that the Krull dimension, which we thenceforth abbreviate as the dimension of a ring,
is larger than n. It shall be of our later efforts to show that it is indeed n.
Remark 4.4. It is obvious that dimA <∞, even when A is a noetherian ring or a local domain.
Definition 4.4. Given a prime ideal p ⊆ A, the dimension of the quotient ring A/p is defined to
be the supremum of the chain of primes starting with p as the smallest prime, because of the one-to-one
correspondence:

{prime ideals A/p} ↔ {prime ideals in A containing p}
q/p 7→ q

In the same spirit, we define the dimension of Ap to be supremum of chain of primes starting from p as
the largest prime. Alternatively, we say the dimAp is the height of the p in A, which we denote as ht(p).
Remark 4.5. Note dimA/p+ht(p) ≤ dimA. Nonetheless, the equality may not hold! A famous example
due to Nagata.

Now we extend the definition to A-modules.
Definition 4.5. For any A-module M , we define the dimension of module M as the dimension
A/AnnA(M), which the dimension of Im(A → EndZ(M)). Further, when M is finitely generated, the
prime ideals p of A containing AnnA(M) are those belong to the support supp(M), that is, the set of
p ∈ Spec(A) such that Mp ̸= 0. Recall the Exercise 3, Question 2(b), we have:

supp(M) = V (AnnA(M))↔ Spec(A/AnnA(M))

Example 4.3. A few trivial examples are as follows: dim(F) = 0, when R a PID which is not a field,
then dim(R) = 1.
Example 4.4. if B ⊇ A be a integral ring extension. Then we shall deduce the invariance of Krull
dimension under integral extension. i.e., dimA = dimB. Note dimA ≥ dimB is a direct consequence of
Going-up theorem, while dimA ≤ dimB because two partially ordered prime ideals in B does not collapse
when intersecting with A, as we have illustrated before in the preamble of Going-up theorem.
Example 4.5. The Going-down theorem, on the other side, gives us another result, that if B ⊇ A a
integral extension. Then ∀q in B, let p = q ∩ A respectively. Then dimBq = htB(q) = htA(p) = dimAp.

We now discuss the dimension of an A-moduleM , the term due to Hilbert or Serre. Note it is sometimes
coined by Samuel as degree of an A-module. For Noetherian local ring A with maximal ideal m, choose
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ideal of definition q ⊆ A such that A/q is of finite length as an A-module. Note this is equivalent to saying
A/q is Artinian or to saying that ∃s ∈ N such that m ⊇ q ⊇ ms.
Example 4.6. Consider the following diagram:

A = K[x, y, z](x,y,z)

m = (x, y, z)

p = (x2, y3, z5)

m5

⊆

⊆

⊆

(64)

We will define the Samuel polynomial Pq(M,n) of M with respect to q, which is a polynomial in n
variables with coefficients in M0, presuming that M has a graded structure. We will show Pq(M,−) has
degree d(M) ∈ N, which is independent of q. We further define the third term s(M), to be the infinimum
of n ∈ N such that ∃x1, ..., xn ∈ m such that M/(x1, ..., xn)M is of finite length.
Definition 4.6. Let A be an Noetherian local ring, we define an ideal q ⊆ m is an ideal of definition if
A/q is of finite length. Note this is equivalent to say

s(M) := inf{No. of generators of an ideal of definition}

Remark 4.6. Note if an ideal q of A is an ideal of definition of A, thenM/qM has finite length. Hence
we see s(A) ≤ min{number of generators of m}, whereas m is of finitely generated since A is Noetherian.

4.3 Hilbert functions and Samuel polynomials
Since the main theorem deals with the Samuel polynomial, hence we shall digress a bit to discuss the
contents of polynomials, which will be conducive in the course of proof.
Definition 4.7. For all k ∈ N, we define:

Qk(x) :=

(
n

k

)
:=

x(x− 1) · · · (x− k + 1)

k!
∈ Q[x]

whereas Q0(x) = 1, Q1(x) = x,Q2(x) =
x2−x

2
.

Remark 4.7. Note the degree of Qk is k. This shows that {Qk}k∈N forms a Q-basis of Q[x]

Consider a Q-linear endomorphism:

∆ : Q[x]→ Q[x]

f 7→ f(x+ 1)− f(x)

We define this function ∆ to be the Difference operator. Note ∆Qk = Qk−1. A quick computation
gives also

∑N
n=1QK(n) =

∑N
n=1Qk+1(n+ 1)−Qk+1(n) = Qk+1(N + 1)−Qk+1(0).

Remark 4.8. For k ≥ 1, ker∆ = Q · 1. For any n ∈ Z, Qk(n) ∈ Z.
Lemma 4.1. For any f ∈ Q[x], the following are equivalent:

1. f is inside the Z-linear span of {Qk}k∈N.

2. ∀n ∈ Z, f(n) ∈ Z.
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3. ∀n ∈ N, and n sufficient large, then f(n) ∈ Z.

4. ∆f ∈ Z · {Qk}k∈N and ∃n0 ∈ Z such that f(n0) ∈ Z.

Proof. (1)→ (2)→ (3) and (1)→ (4) is clear. As for the rest of directions:
(3)⇐ (1): Note every f ∈ Q[x] can be written as a Z-linear combination of Qi, say ∆f = CdQd+ · · ·+C0,
where Ci ∈ Z. let it’s easy to see that f = CdQd+1 + · · ·+ C0Q1 + e where e ∈ Q. But given appropriate
n0 ∈ Z, we have the terms in Qi lies in z, hence e ∈ Z.

(3) ⇒ (1): We use induction on deg f . The base case deg = 0 is trivial. Note deg(∆f) < deg(f),
hence (∆f)(n) ∈ Z for n sufficiently large, so the induction hypothesis on ∆f gives ∆f inside the z-linear
combination of {Qk}. Applying (3)⇒ (1), we have the result.
Definition 4.8. Fix N0 ∈ Z. Let f : Z≥N0 → Z whereas integer-valued fn is defined for all n ∈ Z, n ≥ N0.
We define f to be polynomial-like if ∃ polynomial Pf ∈ Q[x] such that ∀n sufficient large, f(n) = Pf (n).
Remark 4.9. If Pf exists, it is uniquely determined by f and Pf is Z-valued polynomial, that is Z-linear
combination of

(
x
k

)
. We hence define degree of f to be the degree of Pf .

Lemma 4.2. For f : Z≥N0 → Z, the following are equivalent:

1. f is polynomial-like.

2. ∆f is polynomial-like.

3. ∃r ∈ N such that (∆rf)(n) = 0 for all n sufficiently large.

Proof. (1) ⇒ (2) is deduced by previous lemma, while (b) ⇒ (c) is deduced by decreasing the degree of
∆Pf .

(2) ⇒ (1): Now ∆f is polynomial like, so ∃P∆f ∈ Q[x] be a integer-valued polynomial such that
(∆f)(n) = P∆f (n) for n sufficiently large. Choose R ∈ Q[x] be a Z-valued polynomial such that∆R = P∆f ,
then the function g : n 7→ (f(n)−R(n)) vanished for all n >> 0. hence g(n) stabilize at some constant c
for n sufficiently large. Then f(n) = R(N0 + c for n >> 0, which shows f is polynomial-like.

(3)⇒ (1): Apply (2)⇒ (1) r many times to ∆if = 0 for i = 1, ..., r, yielding f is polynomial-like. Now
we recall the context of Samuel polynomial Pq(M). Note we filter A by power of q : A = q0 ⊇ q ⊇ q2 ⊇ · · ·
be the filtration of ideals in A. We define this to be q-adic filtration of A. An completely analogous
filtration gives q-adic filtration of M .
Remark 4.10. q-adic filtration of modules is preserved with respect to quotients. i.e., if ϕ : M ↠ P a
quotient homomorphism, then ϕ(qnM) = qnP , which gives a q-adic filtration of P . However, it is not
necessarily preserved when passing to submodules.
Example 4.7. If ι : N ↪→ M is a inclusion, then N ∩ qnM is not in general equal to qnN . We need to
loosen the type of filtration of M to allow it works. This gives another filtration
Definition 4.9. A filtration of M by A-submodules, M =M0 ⊇M1 ⊇M2 ⊇ · · · is defined to be q-good
if:

1. ∀n ∈ N, qMn ⊆Mn+1;

2. ∀n sufficiently large, q ·Mn =Mn+1.

Remark 4.11. Note the second requirement is NOT equivalent to saying Mn = qnM for all n sufficiently
large! We shall see in a later session, via Artin-Rees Lemma, that q-good filtration is preserved when
passing to submodules.
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For the readers familiar with the graded structure, it is easy to notice that the aforesaid filtratiosn
essentially gives a graded structures sketched by q AND MORE. Recall also that an associated graded
ring of A with respect to a filtration of q is

A := (A/q)⊕ (q/q2)⊕ (q2/q3)⊕ · · ·

We define the term qi/qi+1 to be degree i.
Example 4.8. Consider A := K[x1, ..., xn]m, where m is the maximal ideal generated by x1, ..., xn. Let
q = m.then:

A = K ⊕m/m2 ⊕ · · ·

where mi/mi+1 is the K-vector space spanned by terms of x1, ..., xn of degree i, whence is the homogenous
polynomial of degree i. Hence A is indeed the polynomial ring K[x1, ..., xn].
Definition 4.10. Likewise we defined in a completely analogous manner the Associated graded module
of M with respect to a filtration of q. Moreover, we denote the A andM to be grq(A) and gr(Mn)n(M).

Remark 4.12. The relation between these two associated graded structure is that M can be considered
as a A-module, where the scalar multiplication respects degree, that is:

Aa ×Mb →Ma+b ∀a, b ∈ N

We now define the Hilbert polynomial of a graded module M over a graded ring A. Assume A has the
following properties:

1. A0 is a of finite length when treated as a module of itself. (This is equivalent to say A/q is artinian)

2. A as a A0-algebra is finitely generated by elements in A1 (i.e., A0[x1, ..., xr] ↠ A)

3. A is noetherian as a ring.

Furthermore assume M has the following property:

1. M is finitely generated as a graded A-module

2. Each Mn is finitely generated as A0-module. So ∀n ∈ N, Mn is a finite length A0-module.

Note the first prerequisite of M implies the second, for A is finitely generated with elements in A1 and A
is Noetherian. Hence the maximality argument shall imply that Mn is finitely generated.

Hence it makes sense to consider the function:

Z≥0 → Z
x 7→ ℓA0−module(Mn)

where ℓ denotes the length of the module. We further define the image of n of the above function to be
χ(M,n). We define this function to be Hilbert function.
Example 4.9. In case of A = K[x1, ..., xr] =M , the function maps n to

(
r−1+n
n

)
.

Theorem 4.2 (Hilbert-Serre Theorem). In the aforesaid situation, the Hilbert function we defined n 7→
χ(M,n) is polynomial-like of degree ≤ r − 1, where r is the minimal number of generators (in degree 1)
of A as A0-algebra.
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Proof. First A0[x1, ..., xr] ↠ A quotient homomorphism of graded rings and M is finitely generated A-
modules. We hence can regard M as finitely generated A0[x1, ..., xr]-module, since we may WLOG assume
A = A0[x1, ..., xr]. We now do induction on the number of variables of polynomial ring A, say r.(That is,
A = A0[x1, ..., xr].)
The base case r = 0: A = A0. Then M is finitely generated as A0-module, whence M is itself of finite
length. Hence Mn = 0 for n sufficiently large. Now χ(M,n) = 0 for n >> 0, which is trivially polynomial-
like.

Now assume the theorem holds for A0[x1, ..., xr−1] for some r ≥ 1. Consider the A-module endomor-
phism of M , given by multiplication by m 7→ xr ·m. Then we gives the exact sequence of A-module:

0 N M M R 0
·xr

deg d7→
deg(d+1)

(65)

where N and R are the kernel and cokernel of the multiplication map respectively. Since we can also xr
as of graded map of degree +1, hence ∀n ∈ N:

0 Nn Mn Mn+1 Rn+1 0
xr· (66)

is a exact sequence of A0-module. Now apply ℓA0
to each of the terms, which acting as a additive function.

Hence:
0 = ℓA0

(Nn)− ℓA0
(Mn) + ℓA0

(Mn+1)− ℓA0
(Rn+1)

which gives:
(∆χ)(n) = χ(M,n+ 1)− χ(M,n) = ℓA0

(Rn+1)− ℓA0
(Nn)

Now one key observation is N = ⊕Nn and R = ⊕Rn are both killed by the map xr·. So they can be
treated as A/(xr)-modules, the underlying ring being equivalent to A0[x1, ..., xr−1]. Hence by the induction
hypothesis, we have:

n 7→ ℓA0
(Nn) & n 7→ ℓA0

(Rn)

are both polynomial-like with degree ≤ r − 2. Hence by previous equality (∆χ)(n) is polynomial like of
degree ≤ r2, and by formally integrating the term , we have n 7→ χ(M,n) is polynomial-like of degree
≤ r − 1.

A theorem due to Samuel comes as a (not-so-trivial) corollary of Hilbert-Serre theorem.
Suppose A be a Noetherian local ring with M finitely generated A-module. Given q ⊆ A an ideal of

definition. Now set A := q0/q1/⊕ q1/q2 ⊕ q2/q3 ⊕ · · · and put a q-adic filtration on M . We get:

M =M0 ⊕M1 ⊕ · · · (Mn = qnM/qn+1M)

Now set A0 = A/q. Then the ring being noetherian and local implies that q is finitely generated as an
ideal(or A-algebra) by say, (x1, ..., xr). Hence qn are finitely generated for all n ∈ N, by polynomials
in x1, ..., xr of degree n, which shows that A as an A/q-algebra is finitely generated by x1, ..., xr, with
xi ∈ A1 = q1/q2.

Now in the light of q-adic filtration by q, we could choose generators of M , m1, ...,ml ∈ M such that
m1 ∈ qM but m1 /∈ q2M . then m1 represents an non-trivial element in qM/q2M = M1. Note in such
case we can make all m1, ...,ml in M0 =M/qM , then for all n ∈ N, qnM as an A-module is generated by
polynomials in x1, ..., xr of degree n together with mj. Hence it follows that M = ⊕nqn/qn+1M is finitely
generated as A-module by m1, ...,ml in M0.

Apply Hilbert Samuel theorem to A-moduleM above, so that n 7→ ℓA0
(qnM/qn+1M) is polynomial-like.

If we set:

fm : Z≥0 → Z
n 7→ ℓA(M/qnM)
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Then this fM is polynomial-like.When Mi is the q-adic filtration of M (i.e. Mi = qiM for all i > 0), we
write Pq(M) as the integer-valued polynomial associated to fM . Hence for n sufficiently large, Pq(M)(n) =
ℓA(M/qnM). From the previous prove, we see ∆Pq(M) = Q(n−1) is of degree ≤ r−1, where r is minimal
number of generators of A as an A0-algebra. Hence Pq(M) is of degree ≤ r, where r is simultaneously the
minimal number of generators of q as an A-ideal.
Remark 4.13. Note Samuel Theorem also holds with the exactly same proof when M is endowed with a
q-good filtration. Summarizing the discussion, we have:
Theorem 4.3 (Samuel). Let A be a Noetherian local ring and m a maximal ideal. M is a finitely generated
A-module. Choose q ⊆ m an ideal of definition. We assume M = M0 ⊇ M1 ⊇ · · · is a q-good filtration,
i.e., for n sufficiently large, Mn := qnM . Then the Samuel polynomial n 7→ ℓA(M/Mn) is a polynomial-like
function. Hence ∃! Samuel polynomial P ((Mi)) ∈ Q[X] such that P ((Mi))(n) = ℓA(M/Mn) for all
n >> 0.
Definition 4.11. With (Mn := qnM a q-adic filtration. We write Pq(M) for P ((Mi)), the Samuel
polynomial with respect to q,M . We denote the degree of the filtration to be dq(M), which is the degree
of the Samuel polynomial.
Proposition 4.3. Suppose (Mi) is a q-good filtration, then:

Pq(M) = P ((Mi)) +R

where R is a polynomial of degree < dq(M)(where leading coefficient is > 0).

Proof. By q-good filtration we have a no ∈ nat such that ∀n ≥ n0, Mn+1 = q ·Mn. So

qn+n0 ·M ⊆Mn+n0 = qn ·Mn0 ⊆ qn ·M ⊆Mn

Taking the polynomial counterpart:

Pq(M)(n+ n0) ≥ P ((Mi))(n+ n0) ≥ Pq(M)(n) ≥ P ((Mi))(n)quadwhere n >> 0

That is:
ℓ(M/qn+n0M) ≥ ℓ(M/Mn+n0) ≥ ℓ(M/qnM) ≥ ℓ(M/Mn)

Hence Pq(M)(n)−P ((Mi))(n) ≥ 0 for n >> 0, whence leading term is ≥ 0. We see also that Pq(M) have
the same degree as P ((Mi)).
Proposition 4.4. Degree of Pq(M) depends only on M and is independent of choice of q.

Proof. Suppose q′ is another ideal of definition. What we want to show is Pq(M) and Pq′(M) has the same
degree. Since m ⊇ q ⊇ ms and m ⊇ q′ ⊇ mt for some s, t sufficiently large. Hence we can choose no such
that qno ⊆ q′. Then for n >> 0:

Pq(M)(n · n0) = ℓ(M/qn·n0M) ≥ ℓ(M/(q′)nM) = Pq′(M)(n)

Hence dq(M) ≥ dq′(M). Reverse the argument, we yield equality.
Hence we can drop the q in notation dq(M) and write d(M) instead for any ideal of definition q.

Proposition 4.5. For fixed ideal of definition q and finitely generated A-module. Then M 7→ Pq(M)
is almost additive. i.e., suppose 0 → N → M → P → 0 an short exact sequence for finitely generated
A-module. Then Pq(M) = Pq(N) + Pq(P ) +R where degR < degPq(N) with leading coefficient > 0.
Remark 4.14. To prove this proposition, recall that q-adic filtration does pass down to quotient modules,
while it does not pass to submodules. The following Artin-Rees lemma asserts that a q-adic filtration gives
a q-good filtration when passing to submodule.
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Theorem 4.4 (Artin-Rees Lemma). If N ⊆ M a dubmodule, Then the q-adic filtration on M , when
intersecting with N , gives a q-good filtration of N . That is, ∃n0 ∈ N, such that ∀n ≥ n0, N ∩ qn+n0M =
qn(N ∩ qn0M). To prove this, we need the following lemma:
Lemma 4.3. for a filtration of (Mi) of M such that qMi ⊆Mi+1, the following are equivalent:

1. ∀n ≥ 0, Mn+1 = q ·M (i.e., the filtration is q-good)

2. ∃n0 such that ∀n ≥ 0, Mn+n0 = qnMn0

3. M = ⊕Mu as a module over A = ⊕qi is finitely generated.

Proof. (1) ⇐⇒ (2) is clear. As for (2)⇒ (3), we see M = M0 ⊕M1 ⊕ · · · ⊕Mn0 ⊕ qMn0 ⊕ q2Mn0 ⊕ · · ·
is generated as a module over A = A⊕ q⊕ · · · ⊕ qn0 ⊕ qn0+1 ⊕ · · · by the elements in M0 ⊕ · · ·Mn0 . But
these are finitely generated A-modules for M is finitely generated over A.

(2) ⇒ (1) : If M is finitely generate as A-module, we may assume generators be xi. Then we could
have homogenous generators by x1, ..., xr by degree of n1, ..., nr. IF we choose n0 to be the maximum of
ni, then ∀n ≥ n0, Mn+1 = q ·Mn.

proof of Artin-Rees Lemma. Start with q-adic filtration (Mi = qi ·M) on M , we have M = ⊕iqiM . the
submodule N ⊆ M gets induced filtration Ni := N ∩Mi = N ∩ qiM)i. We set N := ⊕iNi. So N ⊆ M is
a A-submodule. Note A as an A-algebra is finitely generated because if q = (x1, ..., xr), then:

A[X − 1, ..., Xr] ↠ A

Xi 7→ xi

a surjective A-algebra homomorphism. Now since A is Noetherian, hence A[X1, ..., Xn] is noetherian,
whence A is noetherian. Now by applying the previous lemma to M with q-adic filtration, (which is
automatically q-good), we see M is finitely generated as A-module. Since N ⊆ M is A-submodule, and
N is finitely generated as A-module. Again applying the lemma to N , we see (Ni) is a q-good filtration.

proof of proposition. Given a q-adic filtration on M , we have a q-adic filtration (Pi := qiP ) of P and q-
good filtration (Ni = qiM ∩N) of N . Get the Samuel polynomial for each of them: P ((Ni)), Pq(M), Pq(P )
respectively. Now for n >> 0, we get Pq(M)(n) = P ((Ni))(n)+Pq(P )(n) respectively. Now from previous
proposition, Pq(N) = P ((Ni)) + R with degR < degPq(N) and leading term > 0. Hence we have the
proposition by substitution.
Proposition 4.6. Suppose M is finitely generated A-module, Let a := AnnA(M) and q is ideal of defini-
tion. Suppose the ideal (a+ q)/a of A/a is generated by x1, ..., xr. Then d(M) = degPq(M) is ≤ r.

Proof. By replacing A by A/q and q by (a + q)/a, we may assume AnnA(M) = 0 and q = (x − 1, ..., xr)
generated by r elements. Consider the map:

(A/q)[X1, ..., Xr] ↠ grq(A) := ⊕n≥0q
n/qn+1

Xi 7→ (xi mod (qi))

which is a surjective A/q-algebra homomorphism.
When r = 0, then A/q ↠ grq(A), whence q1/q2 = 0, and q1 = q2 = q3 = · · · . Hence M/qM =

M/q2M = · · · Hence ℓ(M/qnM) is a constant. Hence Pq(M) is a constant of degree ≤ 0.
Now assume R ≥ 1. Then (∆Pq(M))(n) = ℓ(M/qn+1M)− ℓ(M/qnM) = ℓA(q

nM/qn+1M which is the
Hilbert polynomial χ(⊕nqnM/qn=1M)(n) is degree ≤ r − 1. Hence Pq(M) has degree ≤ r.
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4.4 Dimension Theorem
In retrospect we have insofar defined three terms for a A-module M , namely, the Krull dimension of M ,
the degree of Samuel polynomial of M and the term s(M). Now it is the main theorem of Dimension
theory of Noetherian local ring that these three terms coincide:
Theorem 4.5 (Dimension Theorem). For noetherian local ring A and finitely generated A-module M ,

dim(M) = d(M) = s(M)

Remark 4.15. We will show that dim(M) ≤ d(M) ≤ s(M) ≤ dim(M). Before proving the theorem, we
shall lace it with some corollaries.
Corollary 4.5. For noetherian local ring A, dim(A) ≤ ∞. Hence chain of primes in A satisfy both a.c.c
and d.c.c.
Corollary 4.6. dim(A) can be alternatively defined as the minimal no. of generators of any ideal of
definition a.
Corollary 4.7 (Krull’s principal ideal theorem). For a noetherian ring A with prime ideal p ⊆ A. Then
for all n ∈ N≥1, e, ht(p) ≤ n ⇐⇒ (∃ ideal a ∈ A generated by n elements such that p is minimal in
V (a)), i.e., p minimally contains some ideal generated by n-elements.

proof of Krull’s principal ideal theorem. ⇒ direction: Note the main theorem aligns dimAp with the min-
imal no. of generators of some ideal of definition of Ap, so dimAp ≤ n implies that ∃q ⊆ Ap can be
generated by x1/s1, ..., xr/sn whereas x1, ..., xr ∈ A and s1, ..., sn ∈ A\p. Now Let a = (x1, .., xr) ⊆ A.
Given ap = q in Ap, this shows that p ∈ v(a). Then p is minimal in V (a) since q is the ideal of definition
in Ap.
⇐ direction: If a ⊆ A is generated by n elements of p ∈ V (a) minimally, then we define q to be ap,

which ap
min
⊆ pAp ⊆ Ap. Hence ap is the ideal of definition of Ap and is generated by n elements. Hence

s(Ap) ≤ n. Again by the main theorem, we have the desired result.
Remark 4.16. We further furnish Krull’s theorem with a special case when n = 1. Then A is noetherian
with p ⊆ A a prime ideal. then ht(p) ≤ 1i ⇐⇒ p minimally contains a principal ideal. Now geometrically
f ∈ K[x1, ..., xn] such that f ̸= 0. V (f)↔ Spec(K[x1, .., xn]/(f)) the later is of dimension n− 1 exactly.

We shall now prove the Dimension Theorem. The readers are advised to review the previous content
on Samuel polynomial.
We need two auxiliary lemmas for the proof.
Lemma 4.4. Given finitely generated A-module M (which may not be of finite length.), then ∃ finite
increasing sequence of submodules 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such that ∀i, Mi/Mi−1

∼= A/pi for
some pi ∈ Spec(A).

Proof. We claim P :={ideals of A of the form AnnA(m) for m ∈ M} and any maximal element in P
is a prime ideal of A. To see this, we let p ∈ P be a maximal element. Say p = AnnA(m) for some
m ∈ M . Suppose a, b ∈ A such that a · b ∈ p with b /∈ p. Then b · m ̸= 0 but a · b · m = 0. Hence
a ∈ AnnA(b ·m) ⊇ AnnA(m) = p. By maximality of p, we get AnnA(b ·m) = p. Hence a ∈ p and p is a
prime ideal.

Now to prove the lemma, we start M0 = 0, if M ̸= M0, then we use claim to get m1 ∈ M such that
AnnA(m1) = p1, which is prime. Then set M1 := A ·m1 ⊆M , whereas M0 ⊊M1 ⊆M . Take quotient by
AnnA(m1), we have the isomorphism: A/p1 = A/AnnA(m1) ∼= A ·m1 = M1/M0. We repeat this process
when M1 ̸= M , to get the sequence: M0 ⊊ M1 ⊊ M2 ⊊ · · · With each Mi/Mi+1 is isomorphic to A/pi
for pi prime. Now M is noetherian since A is noetherian and M is finitely generated. Hence this chain
stabilizes.
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Corollary 4.8. Let {p1, ..., pn} be primes appearing Mi/Mi+1. then {p1, ..., pn} ⊆ supp(M) = {p ∈
Spec(A) :Mp ̸= 0}.
Corollary 4.9. Note form HW, supp(M) = V (AnnA(M)). because A is noetherian and M finitely
generated.

Another Lemma asserts:
Lemma 4.5. Fix x ∈ m where m the unique maximal ideal of local ring A. Then:

1. Let pi ∈ supp(M) be those primes dim(A/pi) = dim(M). If x /∈ pi for all such pi, then

dim(M/xM) ≤ (dimM)− 1

.

2. for any ideal of definition q, Pq(M [x]) − Pq(M/xM) is of degree≤ d(M) − 1, where M [x] = {m ∈
M : xm = 0 ∈M} ⊆M .

3. δ(M) ≤ δ(M/xM) + 1

Proof. (1): Note AnnA(M/xM) ⊇ AnnA(M) + (x), that is, any prime ideal p containing AnnA(M/xM)
must contain these pi’s and by assumption must not be one of those pi. Then m ⊇ p ⊋ pi for all i, whence:

dimA/p ≤ −1 + dimA/pi = (dimM)− 1

(2):We have two exact sequences:

0 M [x] M x(M) 0

0 x(M) M M/xM 0

x

Then from the properties of Pq which we discussed before, we know:

Pq(M) = Pq(M [x]) + Pq(x(M)) +R1 (degR1 < degPq(M [x]))

& Pq(M) = Pq(x(M)) + Pq(M/xM) +R2 (degR2 < degPq(x(M)))

Hence Pq(M [x]) − Pq(M/xM) = R2 − R1. Also since M [x] and x(M) are both submodules of M , then
degPq(M [x]) ≤ deg(Pq(M)) = d(M), and equally degPq(x(M)) ≤ d(M).

(3): If x1, ..., xr ∈ m such that (M/xM)/(x1, ..., xr)(M/xM) =M/(x1, ..., xr)M is of finite length, then
x1, ..., xr works for M as well.

We now start to proof the Dimension theorem:

proof of Dimension Theorem.
step 0: dimM ≤ d(M)

We do induction on d(M). If d(M) = 0, then Pq(M) is of degree 0, and n 7→ ℓ(M/qnM) if eventually
constant. Then by the additivity of ℓ, ∃k such that qk+1M = qkM . Since q is an ideal of definition, then
∃s such that ms ⊇ q ⊆ m, whence m(qk(M)) = qkM . Hence by Nakayama’s lemma, qkM = 0. Hence
qk ∈ AnnA(M), and msk ⊆ AnnA(M), now A/AnnA(M) is the quotient of A/msk, the later of which is of
finite length equal to sk. Now dim(A/AnnA(M) = 0, since all Artinian rings are of dimension 0.

Having seen the base step, we now assume d(M) ≥ 1. Choose p0 ∈ supp(M) such that dim(A/pi) =
dimM is minimal in {p1, ...., pn} appearing in 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mr = M , which M contains
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subquotient module N ∼= A/p0. Hence d(N) ≤ d(M). We now suffices to show that dimN ≤ d(N).
Now N = A/p0, we choose a chain of primes p1 ⊆ p2 ⊆ · · · ⊆ pn which starts at p0. We want to show

dimN = n ≤ d(N). It is done if n = 0. Now assume n > 0. choose x ∈ p1\p0. Then N/xN has p1 ⊆ · · · pn
in supp(N/xN), Now by part (1) of the second auxiliary lemma, dim(N/xN) = dimN − 1 and by by part
(2) of the same lemma, d(N/xN) ≤ d(N)− 1.(For Pq(N [x] = 0) is a zero polynomial. Now by induction
hypothesis on N/xN , (dimN)− 1 ≤ dim(N/xN) = d(N)− 1.

step 1:d(M) ≤ δ(M)
Suppose x1, ..., xr ∈ m such that M/(x1, ..., xr)M is of finite length. Set a := (x1, ..., xr) ⊆ m. Then

q := a + AnnA(M) ⊆ m is an ideal of definition of A, because A/q = A/(AnnA(M) + a) = AM/(a −
image in AM is of finite length ≤ ℓ(M/(x1, ..., xr)) where AM := A/AnnA(M) acts faithfully on M> So
d(M) = degPq(M) ≤ r earlier proposition. Take infinimum over all such q, we get d(M) ≤ δ(M).

step 2:δ(M) ≤ dimM By induction on dimM . If dimM = 0, then M is of finite length, whence
δ(M) = 0 necessarily. Now assume dimM ≥ 1. Let pi ∈ supp(M) such that dim(A/pi) = dimM . Then
these pi are minimal in supp(M). Since dimM ≥ 1, pi are not maximal ideal m in A. Then by the prime
avoidence theorem, we can choose x ∈ m\ ∪i−=1 6rpi. By third part of the second lemma, then δ(M)
leqδ(M/xM) + 1. Again by part (1), dim(M/xM) ≤ (dimM) − 1. Now by the induction hypothesis on
M/xM , δ(M/xM) ≤ dim(M/xM) whence

δ(M) ≤ δ(M/xM) + 1 ≤ dim(M/xM) + 1 ≤ dim(M

4.5 Application of Dimension theorem
We first review some notion in ring theory. Let A is a domain.
Definition 4.12. Consider a, b ∈ A, we say a divides b (denoted as (a|b)) if ∃c ∈ A such that ac = b.
This is equivalent to saying that A ·a ⊇ A ·b. In the same fashion, we say a ∈ A is a irreducible element
if a /∈ A× and for all b, c ∈ A such that a = bc. Then b ∈ A× or a ∈ A×. We call a ∈ A a prime element
if A · a is a prime ideal. Alternatively, we see ∀x, y ∈ A, such that x · y ∈ A · a, then either x or y is in the
ideal. Clearly the prime element is irreducible, but the converse not necessarily hold.

We now restrict our attention to noetherian domain. We see this domain has the following properties:

1. Existence of factorization into irreducibles: Easy to see by the acc on principal ideals.

2. Uniqueness of factorization into irreducibles: This part may FAIL.

3. Uniqueness of factorization into prime elements: Easy to check

4. Existence of factorization into prime elements: This part may also FAIL.

To check why (2) and (4) may fail, we furnish with an example: Consider Z[
√
−5]. Note given α =

a+ b
√
−5. Consider its conjugate α in the complex plane. Note 2 = a2 + 5b2 has no integral solution a, b.

Then 2 is an irreducible element in Z[
√
−5]. However, 2 is not prime. for 5 = (1+

√
−5)(1−

√
−5) = 2 ·3.

It is easy to check that both are irreducible decomposition. Then the ideal p generated by 2, 1−
√
−5 is

a prime but not principal ideal.

Proposition 4.7. Let A be a noetherian domain. then every irreducible element is prime element ⇐⇒
every height 1 prime ideal p ⊆ A(i.e., dimAp = 1) is principal.

Proof. ⇒: Suppose p ⊆ A such that ht(p) = 1. Now take any non-zero element a ∈ p. We can factorize a
into irreducibles a = pi1 · · · pir where each pii is irreducible prime element by assumption.Also since p is
prime ideal, hence (pi1) ⊆ p. Now p is of height 1, we see equality holds, p = (pii). hence every height 1
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prime ideal is principal.
⇐: Conversely, assume a ∈ A is irreducible. Choose prime ideal p ⊆ A containing (a), and minimally
so. Then we localize the ring at p, yielding: Ap = pAp ⊇ Ap(a). Now By Krull’s principal ideal theorem,
ht(p) = dimAp ≤ number of generators of ideal of definition, which in this case is (a). Hence p ̸= (0) ⇒
ht(p) = 1. By our assumption, height 1 prime p is principal. so p = (b) for some b ∈ A. Now since
(a) ⊆ (b) implies a = b · c for some c ∈ A. Since a is irreducible, either b or c lies in A×. Hence c ∈ A×.
Corollary 4.10. Noetherian domains are UFDs.

We further examine the ring A = k[X1, ..., Xd]m=(X1,...,Xd). We see there is a chain of primes:

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, ..., xd)

whence dimA ≥ d. Now consider the Samuel polynomial of A with respect to the ideal of definition m:

Pm(A) : n 7→ dimk(A/m
d)

where A/mn+d consists the polynomials over k in d many variables of degree n. Hence Pm(A) is polynomial
of degree d. Now by dimension theorem dimA = d.

Note we can also consider super-ring of A via scalar extension: Given L/k a finite extension. Then
A⊗kL ⊃ A⊗kKA is a finite ring extension by Cohen-Seiderberg theorem, whence dimA⊗kL = dimA. If
we now consider the algebraic extension of k, denoted as k, then dimA⊗k k = k[X1, .., Xd]m=(x1,...,xd) = d

over k. Recall that Hilbert’s NS asserts that every maximal ideal of k[X1, ..., Xd] is of the form (X1 −
x1, ..., Xd − xd) for some (x1, ..., xd) ∈ k. Now consider the k-algebra automorphism of k[x1, ..., xd]:

ϕ : k[X1, .., Xd]
∼=−→ k(x1, ..., xd)

Xi 7→ Xi + xi

Note the inverse image of m, ϕ−1(m) = (X1 − x1, ..., Xd − xd), which shows every maximal ideal m gives
Am the same degree:

F or any field k and d ∈ N, any maximal ideal m of k[X1, .., Xd], dim(k[X − 1, ..., Xd]m) = d.
Remark 4.17. Recall k(X1, ..., Xd) is a purely transcendental extension of k of degree d. So the aforesaid
dimension also equals to the transcendental degree of its fraction field.

Our dimension theorem aligns with dimA with s(A), the later of which is defined as the minimal
number d such that there exists an ideal of definition q generated by d-many elements. Let q hence be
generated by (X1, ..., Xd) = q. We define (X1, ..., Xd) to be the system of parameters for A.
Lemma 4.6. For any homogenous polynomial f ∈ A[X1, .., Xd] of degree s, with A a noetherian local
rings. If f(X1, ..., Xd) ∈ qs+1, Then f has all coefficients in m, where m the unique maximal ideal of A.

Proof. First consider the A/q-algebra homomorphism:

A/q[X1, ..., Xd]
ϕ
↠ grd(A) = ⊕n≥0q

n/qn+1

Xi 7→ (x1 mod q2)

hence homogenous polynomial f of degree s is passed to f ∈ grd(A), which are homogenous polynomials
over A/q of degree s or 0. Now the assumption that f ∈ qn+1 forces f to be in the kernel of ϕ.
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We now suppose to the contrary that f is not in m. Then f is a unit, and f is a not a zero divisor.
Since

degPq(A)(n >> 0) = ℓ(A/qn+1) = ℓ(A/q) + · · ·+ ℓ(qn+1/qn+1)

≤ ℓ(A/q) + · · · ℓ(A/q-module generated by degree npolynomials in X1, ..., Xd)

= ℓ(A/q) · (1 + · · ·+
(
d+ n+ 1

d− 1

)
)

Note the sum (1+ · · ·+
(
d+n+1
d−1

)
) can be considered as a polynomial of degree d of n, whence the degree of

Samuel polynomial degPq(A) ≤ d. Now since f ∈ ker(ϕ), we have Pq(A)(n >> 0) ≤ (A/q[X1, ..., Xd]/(f)).
Now by the lemma right before the proof of dimension theorem, we have

degPq(A) ≤ d− 1

for d(A/q[X1, ..., Xd]/(f)) ≤ d(A/q[X − 1, ..., Xd]) − 1. But by dimension theorem, we have degPq(A) =
s(A) = d. Hence we have a contradiction.
Corollary 4.11. Suppose a noetherian local ring A is also a k-algebra, where k is a field and k ↪→ A ↠
A/m = k′ (k′ is a field extension of k). Then if d = s(A) and q = (X1, ..., Xd) is an ideal of definition of
A. Then X1, ..., Xd are algebraically independent over k.

Proof. Suppose to the contrary X1, ..., Xd are algebraically dependent, then ∃f ∈ k[X1, ..., Xd] is non-zero
we write: f = fs + g, where fs is homogenous part of f of degree s (s is the minimal degree of f). From
f = 0 we see fs ∈ qs+1, whence by previous lemma we have fs = 0 has coefficients in m when regarded as
A-polynomial. But by the previous extension k′ of k, we se fs = 0 as a k′-polynomial. Hence fs = 0 as a
k-polynomial. Hence f = 0.
Remark 4.18. The readers can alternatively refer to Atiyah Macdonald 11.20 and 11.21 for the previous
theorem. Also when we change A in the corollary to be a domain. then X1, ..., Xd ∈ A are d many
algebraically independent elements over k in the fraction field of A.

Theorem 4.6. Let A be a finitely generated domain (which is a finitely generated k-algebra by the map
k[X1, ..., Xd] ↠ A) Then any maximal ideal m ⊆ A, the dimension of Am is transcendental degree of
fraction field of A over k.

Proof. We denote in this proof the transcendental degree of fraction field of A over k as d′. Note Am

is a Noetherian local ring and k ↪→ Am ↠ A/m. Note by the corollary above and its remark, we have
d many elements X1, ..., Xd in the fraction field of A which are algebraically independent over k, with
d = s(Am) = dim(Am).H Hence d = s(Am) = dim(Am). Hence dim(Am) ≤ d′.

Now by Noether’s Normalization lemma, ∃ polynomial k-algebra k[Y1, ..., Yr] ⊆ A such that A is finite
ring extension over k[Y1, ..., Yr]. Now by Cohen-Seiderberg theorem, since A is a integral ring extension
over k[Y1, ..., Yr], which is integrally closed in its fraction field. Now choose maximal ideals m and m′ in A
and k[Y1, ..., Yr] respectively. Now we see:

d = dim(Am) = dim(k[Y1, ..., Yr]m′ = r

where the first equality is from the dimension theorem and the last from direct computation which we
performed earlier. Now we see the fraction field of A over k(Y1, ..., Yn) is, by Noether Normalization lemma,
a algebraic extension, whence their transcendental degree over k are equal.

Recall for A being noetherian local rings, and p prime ideal in A, we have ht(p) + dim(A/p) ≤ dimA.
The equality can be obtained with suitable restriction of scope.
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Theorem 4.7. When A is a finitely generated k-algebra and domain. Then for any prime p ⊆ A, we have
ht(p) + dim(A/p) = dimA.

Proof. We would need stronger version of Normalization lemma to prove this theorem:
Lemma 4.7. Let A be a finitely generated k-algebra. Consider a1 ⊊ a2 ⊊ · · · ⊊ ap an increasing chain of
primes in A. Then ∃r ∈ N and x1, ..., xr ∈ A which are algebraically independent over k such that:

1. A is finite over k[X1, ..., Xr]

2. For each i ∈ 1, ..., p, ∃ ht(i) ∈ N such that ai ∩ k[X1, ..., Xr](X1, ..., Xht(i)

proof of theorem. Use stronger normalization lemma, we get:

A p

B p ∩B

⊇

⊆

⊇

⊆ (67)

We set p; = p′ ∩B, which is generated by X1, ..., Xn. We hence have a chain:

p′ ⊋ (X1, ..., Xn) ⊋ · · · ⊋ (X1)

We further conclude from earlier discussion that dimA = dimB = r, so ht(p′) ≥ h. But p′ is generated
by h many elements, hence it is minimally containing itself. Now by Krull principal ideal theorem, we see

ht(p′) ≤ h

Then ht(p ⊆ A) is also h. Also B/p′ = k[X − 1, ..., X − r]/(X − 1, ..., Xn) = k[xn+1, ..., xr], which shows
dim(BB/p′) = r − h, whence dimA/p = dimB/p′ = r − h. Hence ht(p) + dimAp = r = dimA.

We finalize the discussion of this section with the following corollary.
Corollary 4.12. A is a finitely generated k-algebra and a domain. Then all maximal chains of prime
ideals have the same length.

Proof. Given any maximal chain of primes 0 = p0 ⊊ p1 ⊊ p2 ⊊ · · · ⊊ ph, then ph must be a maximal
ideal. Hence dim(A/pi)pi+1

= 1 since it is a maximal chain. Now dim(A/pi) − dim(A/pi+1) = 1. Do
this inductively, we see dimA = dim(A/p0). Hence dim(A/ph) = 0 = dimA − h, whence h = dimA is a
invariant of A.
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